博碩士論文 109322025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.137.169.46
姓名 陳晉群(CHIN-CHUN CHEN)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 研發具邊緣運算能力之無線振動量測裝置應用於橋梁鋼索特徵頻率偵測
相關論文
★ 基於低功耗嵌入式系統及高精度MEMS感測器的智慧鋼索監測系統研發★ Sensor Code-based Smart Tag Embedded in Concrete for Seepage Sensing Caused by Cracks
★ 智慧型居家機器人用於地震後自動巡查及應變處置之研究★ 利用UAV整合LoRa與磁導喚醒技術的物聯網架構研發
★ 基於BERT語意分析模型的智慧型BIM資訊搜尋問答系統之研究★ 基於BIM與無線喚醒物聯網裝置之智慧化結構檢測系統開發
★ 利用微型機器學習與微控制器即時檢測室內地磚空心缺陷★ 結合智慧感測標籤與支持向量機快速判定混凝土裂縫位置
★ 應用於鋼結構檢測之高機動型蚇蠖攀爬機器人設計分析及實作驗證★ 混凝土缺陷自動修補機器人之研發
★ 結合智慧感測標籤與機器學習方法判別混凝土內部鋼筋鏽蝕可能性之研究★ 應用於攀爬檢測機器人之輕量級即時多目標螺栓缺陷影像檢測系統之研究
★ 具即時聽覺辨識之機械手臂應用於螺栓鬆脫檢測之研究★ 生物啟發式攀爬機器人應用於外牆磁磚缺陷檢測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 現今橋梁健康安全檢測大多仍屬於有線傳輸,並且同一時間僅對
單一或少量幾個構件進行檢測,檢測所有橋梁構件,需要伴隨大量器
材設備的移動,及多次有線檢測儀器的安裝,相當的費時費力。 因此
本研究研發出一種無線振動量測裝置,裝置上包含了一顆微控制器
(Micro Control Unit,MCU)、 一顆高精度的 ADXL355 加速度計量測鋼
纜加速度、 一個 LoRa(Long Range)做為無線傳輸模組、 SD 卡模組儲
存實驗資料,本儀器體積大約為 15cm*10cm*5cm, 方便攜帶、無須
架設有線線材、 且易安裝於鋼纜上。本研究將儀器架設在真實橋梁鋼
纜上進行現地實驗,其運作模式為平常系統會維持待機狀態,當使用
者發送檢測命令後,系統即開始對鋼索進行檢測,透過量測鋼纜的歷
時加速度資料,並進行快速傅立葉轉換(Fast Fourier Transform, FFT),並運行自行研發之演算法計算出鋼纜的振態頻率, 透過自動化作業及無線傳輸將特徵頻率回傳給使用者,使用者即可根據弦理論推算鋼纜
張力。在軟體方面,本研究克服了微控制器內存不夠影響快速傅立葉
轉換資料量、與在單核心 CPU 需同時進行加速度資料採樣與儲存的
問題, 在特徵頻率演算法部分也提升了特徵頻率輸出的準確度。 實驗
結果證明了系統的可行性,成功在感測節點完成測量與運算,並成功ii
以無線傳輸方式將特徵頻率回傳給使用者,成功開發出一種可在邊緣
運算且省時省力的鋼纜健康監測系統。
摘要(英) Nowadays, most bridge health and safety inspections are still wired
transmissions, and only a single or a small number of bridge components
are inspected simultaneously. The detection of all bridge components
requires the movement of a large number of equipment, the installation of
several wired detection instruments, and the structure of multiple wired
inspection instruments, which is quite time-consuming. Therefore, this
research has developed a low-power wireless vibration sensing device,
which includes a micro control unit (MCU), a high-precision adxl355
acceleration meter to measure the acceleration of steel cable, and a Lora
(Long range) as a wireless transmission module and SD card module to
store experimental data. The volume of this instrument is about
15cm*10cm*5cm, which is convenient to carry and easy to install on steel
cables. The operating mode is that the system will maintain a standby state.
When the user sends the detection command, the system starts to detect the
vibration on the steel cable. Through measuring the diachronic acceleration
data of the steel cable, performing a fast Fourier transform (FFT), and
running the self-developed algorithm to calculate the vibration frequency
of the steel cable, the eigenfrequency is transmitted back to the user
through automatic operation and wireless transmission, and the user can
calculate the cable tension based on string theory. In terms of software, this
study overcomes the problems of insufficient memory in the
microcontroller, which affects the amount of fast Fourier transform data,
and the need to sample and store acceleration data simultaneously in a
single core CPU. In the eigenfrequency algorithm part, the accuracy of theiv
eigenfrequency output is simultaneously experimental results that prove
the system’s feasibility. The measurement and calculation are completed at
the sensing node, and the eigenfrequency is transmitted back to the user by
a wireless transmission system that saves time and effort.
關鍵字(中) ★ 微振法
★ 結構健康檢測
★ 物聯網
★ 邊緣運算
關鍵字(英) ★ LoRa
論文目次 摘要........................................................................................................................................... ii
Abstract ................................................................................................................................... iv
致謝.......................................................................................................................................... vi
目錄......................................................................................................................................... vii
表目錄...................................................................................................................................... ix
圖目錄....................................................................................................................................... x
第一章 緒論.......................................................................................................................... 1
1-1 研究背景與動機........................................................................................1
1-2 研究目的....................................................................................................2
1-3 論文架構....................................................................................................2
第二章 文獻回顧.................................................................................................................. 4
2-1 鋼纜之自動健康安全檢測技術................................................................4
2-2 基於鋼纜振動之張力估計方法................................................................7
2-3 微動量測....................................................................................................8
第三章 研究方法................................................................................................................ 10
3-1 系統架構..........................................................................................10
3-2 硬體架構..........................................................................................11
3-3 軟體架構..........................................................................................17
第四章 實驗規劃與設計.................................................................................................... 23
4-1 縮尺實驗系統驗證實驗..........................................................................23
4-1-1 實驗目的......................................................................................23
4-1-2 實驗步驟......................................................................................24
4-2 現地橋梁實驗規劃..................................................................................25
4-2-1 測試橋體介紹..............................................................................25
4-2-2 量測規劃......................................................................................27
第五章 實驗結果與討論.................................................................................................... 31
5-1 縮尺實驗系統驗證實驗..........................................................................31
5-2 現地橋梁實驗實驗結果..........................................................................36
5-3 傅立葉轉換比較圖..................................................................................44
5-4 隨時間移動窗格之傅立葉轉換..............................................................45
5-5 特徵頻率演算法實驗結果......................................................................54
5-6 傅立葉轉換之功率疊加..........................................................................56
第六章 結論與未來展望.................................................................................................... 69
6-1 結論..........................................................................................................69vii
6-2 未來建議..................................................................................................70
參考文獻................................................................................................................................. 71
參考文獻 [1] M. Géradin and D. J. Rixen, Mechanical vibrations: theory and application to
structural dynamics. John Wiley & Sons, 2014.
[2] D. Siegert and P. Brevet, "Fatigue of stay cables inside end fittings : high
frequencies of wind induced vibrations," 2005.
[3] M. Wang, D. Satpathi, S. Koontz, A. Jarosevic, and M. Chandoga,
"Monitoring of cable forces using magneto-elastic sensors," in Computational
Mechanics in Structural Engineering: Elsevier, 1999, pp. 337-347.
[4] H. Li, J. Ou, and Z. Zhou, "Applications of optical fibre Bragg gratings
sensing technology-based smart stay cables," Optics and Lasers in
Engineering, vol. 47, no. 10, pp. 1077-1084, 2009.
[5] S.-H. Sim et al., "A wireless smart sensor network for automated monitoring
of cable tension," Smart Materials and Structures, vol. 23, no. 2, p. 025006,
2013.
[6] J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of
complex Fourier series," Mathematics of computation, vol. 19, no. 90, pp.
297-301, 1965.
[7] M. L. Wang, G. Wang, and Y. Zhao, "Application of EM stress sensors in large
steel cables," in Sensing issues in civil structural health monitoring: Springer,
2005, pp. 145-154.
[8] J. Ko and Y. Q. Ni, "Technology developments in structural health monitoring
of large-scale bridges," Engineering structures, vol. 27, no. 12, pp. 1715-1725,
2005.
[9] B. Glišić, D. Posenato, and D. Inaudi, "Integrity monitoring of an old steel
bridge using fiber optic distributed sensors based on Brillouin scattering," in
Nondestructive characterization for composite materials, aerospace
engineering, civil infrastructure, and homeland security 2007, 2007, vol.
6531: International Society for Optics and Photonics, p. 65310P.
[10] C. R. Farrar and K. Worden, "An introduction to structural health monitoring,"
Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 365, no. 1851, pp. 303-315, 2007.
[11] S.-S. Jin, S. Jeong, S.-H. Sim, D.-W. Seo, and Y.-S. Park, "Fully automated
peak-picking method for an autonomous stay-cable monitoring system in
cable-stayed bridges," Automation in Construction, vol. 126, p. 103628, 2021.
[12] C. H. Chen, Y. Y. Lin, C. H. Chang, S. C. Yang, Y. C. Cheng, and M. C.
Huang, "Aerodynamic Analysis in Time Domain of a Cable-Stayed Bridge," in
Advanced Materials Research, 2012, vol. 479: Trans Tech Publ, pp. 1205-72
1208.
[13] R. H. Scanlan and J. J. Tomko, "Airfoil and bridge deck flutter derivatives,"
Journal of the engineering mechanics division, vol. 97, no. 6, pp. 1717-1737,
1971.
[14] Y. Y. Lin and Y. L. Lieu, "Geometrically nonlinear analysis of cable‐stayed
bridges subject to wind excitations," Journal of the Chinese Institute of
Engineers, vol. 26, no. 4, pp. 503-511, 2003.
[15] I. J. Drygala and J. M. Dulinska, "A theoretical and experimental evaluation of
the modal properties of a cable-stayed footbridge," Procedia engineering, vol.
199, pp. 2937-2942, 2017.
[16] S. Cho, J. P. Lynch, J.-J. Lee, and C.-B. Yun, "Development of an automated
wireless tension force estimation system for cable-stayed bridges," Journal of
Intelligent Material Systems and Structures, vol. 21, no. 3, pp. 361-376, 2010.
[17] V. Straupe and A. Paeglitis, "Analysis of geometrical and mechanical
properties of cable-stayed bridge," Procedia Engineering, vol. 57, pp. 1086-
1093, 2013.
[18] C. Bedon, E. Bergamo, M. Izzi, and S. Noè, "Prototyping and validation of
MEMS accelerometers for structural health monitoring—The case study of the
Pietratagliata cable-stayed bridge," Journal of Sensor and Actuator Networks,
vol. 7, no. 3, p. 30, 2018.
[19] H. Zui, T. Shinke, and Y. Namita, "Practical formulas for estimation of cable
tension by vibration method," Journal of structural engineering, vol. 122, no.
6, pp. 651-656, 1996.
[20] A. B. Mehrabi and H. Tabatabai, "Unified finite difference formulation for free
vibration of cables," Journal of Structural Engineering, vol. 124, no. 11, pp.
1313-1322, 1998.
[21] B. H. Kim and T. Park, "Estimation of cable tension force using the frequencybased system identification method," Journal of sound and Vibration, vol.
304, no. 3-5, pp. 660-676, 2007.
[22] R. Geier, G. De Roeck, and R. Flesch, "Accurate cable force determination
using ambient vibration measurements," Structure and Infrastructure
Engineering, vol. 2, no. 1, pp. 43-52, 2006.
[23] Y. Ni, G. Zheng, and J. Ko, "Dynamic monitoring of bridge cables for
condition assessment," in International Conference on Advances in Structural
Engineering and Mechanics [ASEM], 2002.
[24] W.-X. Ren, X.-L. Peng, and Y.-Q. Lin, "Experimental and analytical studies on
dynamic characteristics of a large span cable-stayed bridge," Engineering
Structures, vol. 27, no. 4, pp. 535-548, 2005.73
[25] W.-H. Wu, C.-C. Chen, and J.-A. Liau, "A multiple random decrement method
for modal parameter identification of stay cables based on ambient vibration
signals," Advances in Structural Engineering, vol. 15, no. 6, pp. 969-982,
2012.
[26] C.-C. Chen, W.-H. Wu, C.-H. Huang, and G. Lai, "Determination of stay cable
force based on effective vibration length accurately estimated from multiple
measurements," Smart Structures and Systems, vol. 11, no. 4, pp. 411-433,
2013.
[27] C.-C. Chen, W.-H. Wu, M.-R. Leu, and G. Lai, "Tension determination of stay
cable or external tendon with complicated constraints using multiple vibration
measurements," Measurement, vol. 86, pp. 182-195, 2016.
[28] P. Welch, "The use of fast Fourier transform for the estimation of power
spectra: a method based on time averaging over short, modified
periodograms," IEEE Transactions on audio and electroacoustics, vol. 15, no.
2, pp. 70-73, 1967.
[29] M. Ruzzene, A. Fasana, L. Garibaldi, and B. Piombo, "Natural frequencies and
dampings identification using wavelet transform: application to real data,"
Mechanical systems and signal processing, vol. 11, no. 2, pp. 207-218, 1997.
[30] J. R. Casas, "A combined method for measuring cable forces: the cable-stayed
Alamillo Bridge, Spain," Structural Engineering International, vol. 4, no. 4,
pp. 235-240, 1994.
[31] K. Takahashi, "Dynamic stability of cables subjected to an axial periodic
load," Journal of Sound and Vibration, vol. 144, no. 2, pp. 323-330, 1991.
指導教授 林子軒 審核日期 2022-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明