博碩士論文 110322023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:91 、訪客IP:18.220.116.34
姓名 楊謦豪(Qing-Hao Yang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 結合智慧感測標籤與支持向量機快速判定混凝土裂縫位置
(Combining smart sensing tags and support vector machine to determine the location of concrete cracks)
相關論文
★ 應用智慧標籤及數據驅動方法於水接觸結構物之結構評估★ 基於低功耗嵌入式系統及高精度MEMS感測器的智慧鋼索監測系統研發
★ Sensor Code-based Smart Tag Embedded in Concrete for Seepage Sensing Caused by Cracks★ 智慧型居家機器人用於地震後自動巡查及應變處置之研究
★ 利用UAV整合LoRa與磁導喚醒技術的物聯網架構研發★ 基於磁吸附與全向輪技術的鋼結構攀爬機器人開發與驗證
★ 基於微型機器學習的智能避障系統在外牆檢測自主移動機器人中的應用★ 基於ROS的遠端自動多螺栓 檢測機器人系統開發
★ 基於BERT語意分析模型的智慧型BIM資訊搜尋問答系統之研究★ 基於BIM與無線喚醒物聯網裝置之智慧化結構檢測系統開發
★ 利用微型機器學習與微控制器即時檢測室內地磚空心缺陷★ 應用於鋼結構檢測之高機動型蚇蠖攀爬機器人設計分析及實作驗證
★ 混凝土缺陷自動修補機器人之研發★ 研發具邊緣運算能力之無線振動量測裝置應用於橋梁鋼索特徵頻率偵測
★ 結合智慧感測標籤與機器學習方法判別混凝土內部鋼筋鏽蝕可能性之研究★ 應用於攀爬檢測機器人之輕量級即時多目標螺栓缺陷影像檢測系統之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 台灣之社會與經濟發展至今,國土上的土木建築物逐漸增多,在土地資源有限的情況下已經無法再隨意建造大型建築物了。中華民國內政部建築研究所亦提出高樓建築不能在僅僅是提供空間作居住或辦公使用,還需要考慮使用時的安全、通訊、防災、節能等問題。將高資訊科技化與人性化融入建築設計,建造智慧建築,並且以此間接提升國家競爭力。
本研究結合RFID智慧感測標籤與3D列印等技術用作感測混凝土裂縫位置,並加上SVM支持向量機尋找資料特徵,以加速判斷裂縫存在與否。結合以上技術,本研究以智慧化安全防災為目標,開發一套非破壞性檢測系統,用於快速、方便且價格低廉地檢測混凝土裂縫之位置。使用RFID智慧感測標籤可以降低檢測系統中感測器的價格花費。當混凝土有裂縫產生時,該區域的混凝土滲水量將會上升,而埋置於混凝土內部的RFID智慧感測標籤就可以感測環境中的水分變化、回傳相應的數值。使用3D列印技術可以為RFID智慧感測標籤提供一定的保護,避免芯片遭受混凝土侵蝕。經由讀取器收集到的數據可由SVM支持向量機做分類,可以獲得快速且準確的結果。
經過本研究的嘗試,當混凝土結構物是處於潮濕的環境中,經由SVM支持向量基分類,正確找到混凝土裂縫是否有經過的機率為98.82%。且該結果已經透過其他數項AI人工智慧模型的效果指標驗證其精度。透過正確分類數據,可以推斷產生該數據的感測區域是否有裂縫通過。
摘要(英) Integrate high information technology and humanization into architectural design, build smart buildings, and indirectly enhance national competitiveness. Taiwan′s social and economic development has gradually increased the number of civil buildings on the land. Given the limited land resources, building large buildings at will is no longer possible. The Architectural Research Institute of the Ministry of Internal Affairs of the Republic of China also pointed out that high-rise buildings should not only provide space for living or office use but also consider issues such as safety, communication, disaster prevention, and energy saving during use.
In this study, technologies such as RFID smart sensing tags and 3D printing are used to sense the location of concrete cracks, and SVM support vector machine is used to find data features to speed up the judgment of the existence of cracks. Combining the above technologies, this research aims at intelligent safety and disaster prevention and develops a non-destructive detection system to detect the location of concrete cracks quickly, conveniently, and inexpensively. Using RFID smart sensor tags can reduce the cost of sensors in the detection system. When there are cracks in the concrete, the amount of water seepage in the concrete will increase, and the RFID smart sensor tag embedded in the concrete can sense the moisture change in the environment and return the corresponding value. 3D printing technology can provide specific protection for the RFID smart sensor tag to prevent the chip from being corroded by concrete. The data collected via the reader can be sorted by the SVM support vector machine, which can obtain fast and accurate results.
After the attempts of this study, when the concrete structure is in a wet environment, the probability of correctly finding whether the concrete crack has passed through the SVM support vector basis classification is 98.82%. Moreover, the result has been verified by the performance indicators of several other AI artificial intelligence models. By correctly classifying the data, it is possible to infer whether a crack has passed through the sensing area where the data was generated.
關鍵字(中) ★ RFID 智慧感測標籤
★ 3D列印
★ SVM支持向量機
★ AI人工智慧
關鍵字(英) ★ RFID smart tag
★ 3D printing
★ SVM support vector machine
★ AI artificial intelligence model
論文目次 摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
一、緒論 1
1-1 研究背景與動機 1
1-2 研究目的 2
1-3 論文架構 2
二、文獻回顧 4
三、研究方法 8
3-1 研究架構 8
3-2 RFID智慧感測標籤 10
3-3 破壞指標 12
3-4 支持向量機 16
3-4-1 最優超平面 16
3-4-2 不完美之樣本的最佳超平面 20
3-4-3 核函數 23
3-5 模型效果分析方法 25
四、實驗規劃與設計 27
4-1實驗設備 27
4-1-1實驗儀器 27
4-1-2 軟體 29
4-2 數據來源 30
4-2-1 一般梁設計 30
4-2-2 實驗設置 32
4-2-3 實驗流程 33
4-2-4 實驗梁裂縫分布 34
4-3 模型特徵選擇 37
4-4 模型輸入之訓練與測試資料說明 40
五、成果與討論 44
5-1 以破壞指標為單一特徵參數輸入訓練之模型 44
5-2 以讀取值與初始值為雙特徵輸入訓練之模型 56
5-3 以破壞指標與讀取距離為雙特徵輸入訓練之模型 68
5-4 以破壞指標與讀取夾角為雙特徵輸入訓練之模型 80
5-5 以破壞指標、讀取距離及讀取夾角做為三項特徵輸入訓練之模型 92
5-6 五維特徵之模型 104
5-7 總指標模型 113
六、結論與未來展望 130
6-1 結論 130
6-2 未來建議 132
七、參考文獻 133
參考文獻 [1] G-L Qian, S-N Gu, and J-S Jiang, "The dynamic behaviour and crack detection of a beam with a crack," Journal of sound and vibration, vol. 138, no. 2, pp. 233-243, 1990.
[2] Yonas B Dibike, Slavco Velickov, and Dimitri Solomatine, "Support vector machines: Review and applications in civil engineering," Proc. 2nd Jt. Work. Appl. AI Civ. Eng., Citeseer, pp. 215-8, 2000.
[3] Akira Mita and Hiromi Hagiwara, "Quantitative damage diagnosis of shear structures using support vector machine," KSCE Journal of Civil Engineering, vol. 7, no. 6, pp. 683-689, 2003.
[4] M Dilena and A Morassi, "The use of antiresonances for crack detection in beams," Journal of Sound and Vibration, vol. 276, no. 1-2, pp. 195-214, 2004.
[5] Christian Schuldt, Ivan Laptev, and Barbara Caputo, "Recognizing human actions: a local SVM approach," in Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., 2004, vol. 3: IEEE, pp. 32-36.
[6] Long Liu, Guang Meng, and Hai Huang, "Damage Detection Based on ESPI and SVM," in Key Engineering Materials, 2006, vol. 324: Trans Tech Publ, pp. 1309-1312.
[7] Johan Siden, Xuezhi Zeng, Tomas Unander, Andrey Koptyug, and Hans-Erik Nilsson, "Remote moisture sensing utilizing ordinary RFID tags," in SENSORS, 2007 IEEE, 2007: IEEE, pp. 308-311.
[8] Yan Yang and Tian-Yi Liu, "Application of support vector machine in structure damage identification," in 2009 International Conference on Information Engineering and Computer Science, 2009: IEEE, pp. 1-3.
[9] M Sun, WJ Staszewski, and RN Swamy, "Smart sensing technologies for structural health monitoring of civil engineering structures," Advances in civil engineering, vol. 2010, 2010.
[10] S Capdevila, G Roqueta, M Guardiola, L Jofre, J Romeu, and J Ch Bolomey, "Water infiltration detection in civil engineering structures using RFID," in 2012 6th European Conference on Antennas and Propagation (EUCAP), 2012: IEEE, pp. 2505-2509.
[11] Mohammad Abdul Haque Farquad and Indranil Bose, "Preprocessing unbalanced data using support vector machine," Decision Support Systems, vol. 53, no. 1, pp. 226-233, 2012.
[12] Xiaolin Jia, Quanyuan Feng, Taihua Fan, and Quanshui Lei, "RFID technology and its applications in Internet of Things (IoT)," in 2012 2nd international conference on consumer electronics, communications and networks (CECNet), 2012: IEEE, pp. 1282-1285.
[13] A Costin, A Shaak, and J Teizer, "Development of a navigational algorithm in BIM for effective utility maintenance management of facilities equipped with passive RFID," in Computing in Civil Engineering (2013), 2013, pp. 653-660.
[14] Yunqian Ma and Guodong Guo, Support vector machines applications. Springer, 2014.
[15] Abdulkadir Çevik, Ahmet Emin Kurtoğlu, Mahmut Bilgehan, Mehmet Eren Gülşan, and Hasan M Albegmprli, "Support vector machines in structural engineering: a review," Journal of Civil Engineering and Management, vol. 21, no. 3, pp. 261-281, 2015.
[16] SGN Murthy, "Batteryless Wireless RFID based embedded sensors for long term monitoring of reinforced concrete structures," in Proceedings of the International Symposium Non-Destructive Testing in Civil Engineering (NDT-CE), Berlin, Germany, 2015, pp. 15-17.
[17] Guoqing Gui, Hong Pan, Zhibin Lin, Yonghua Li, and Zhijun Yuan, "Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection," KSCE Journal of Civil Engineering, vol. 21, no. 2, pp. 523-534, 2017.
[18] Gang Li, Xiaoxing Zhao, Kai Du, Feng Ru, and Yubo Zhang, "Recognition and evaluation of bridge cracks with modified active contour model and greedy search-based support vector machine," Automation in Construction, vol. 78, pp. 51-61, 2017.
[19] Christoph Strangfeld, Sergej Johann, Maximilian Müller, and Matthias Bartholmai, "Embedded passive RFID-based sensors for moisture monitoring in concrete," in 2017 IEEE SENSORS, 2017: IEEE, pp. 1-3.
[20] Ying Zhou, Wanjun Su, Lieyun Ding, Hanbin Luo, and Peter ED Love, "Predicting safety risks in deep foundation pits in subway infrastructure projects: support vector machine approach," Journal of Computing in Civil Engineering, vol. 31, no. 5, p. 04017052, 2017.
[21] Georgios M Hadjidemetriou, Patricio A Vela, and Symeon E Christodoulou, "Automated pavement patch detection and quantification using support vector machines," Journal of Computing in Civil Engineering, vol. 32, no. 1, p. 04017073, 2018.
[22] Sérgio Francisco Pichorim, Nathan J Gomes, and John C Batchelor, "Two solutions of soil moisture sensing with RFID for landslide monitoring," Sensors, vol. 18, no. 2, p. 452, 2018.
[23] Žiga Korošak, Nejc Suhadolnik, and Anton Pleteršek, "The implementation of a low power environmental monitoring and soil moisture measurement system based on UHF RFID," Sensors, vol. 19, no. 24, p. 5527, 2019.
[24] Mathieu Le Breton, Laurent Baillet, Eric Larose, Etienne Rey, Philippe Benech, Denis Jongmans, Fabrice Guyoton, and Michel Jaboyedoff, "Passive radio-frequency identification ranging, a dense and weather-robust technique for landslide displacement monitoring," Engineering Geology, vol. 250, pp. 1-10, 2019.
[25] Shengyuan Li and Xuefeng Zhao, "Image-based concrete crack detection using convolutional neural network and exhaustive search technique," Advances in Civil Engineering, vol. 2019, 2019.
[26] R VIDYA Sagar, "Support vector machine procedure and gaussian mixture modelling of acoustic emission signals to study crack classification in reinforced concrete structures," in Proceedings of the 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-X G, Bayonne, France, 2019, pp. 24-26.
[27] Yan-Ting Wang, "Sensor Code-based Smart Tag Embedded in Concrete for Seepage Sensing Caused by Cracks," National Central University, 2020.
[28] N Aravind, S Nagajothi, and S Elavenil, "Machine learning model for predicting the crack detection and pattern recognition of geopolymer concrete beams," Construction and Building Materials, vol. 297, p. 123785, 2021.
[29] Tzu-Hsuan Lin, Alan Putranto, and Yan-Ting Wang, "Smart sensor tags for seepage sensing protected by 3D-printed case for embedding in concrete structures," Construction and Building Materials, vol. 284, p. 122784, 2021.
[30] Bilal Manzoor, Idris Othman, Serdar Durdyev, Syuhaida Ismail, and Mohammad Hussaini Wahab, "Influence of artificial intelligence in Civil engineering toward sustainable development—a systematic literature review," Applied System Innovation, vol. 4, no. 3, p. 52, 2021.
[31] Sen Wang, Chang Liu, and Yinhui Zhang, "Fully convolution network architecture for steel-beam crack detection in fast-stitching images," Mechanical Systems and Signal Processing, vol. 165, p. 108377, 2022.
指導教授 林子軒(Tzu-Hsuan Lin) 審核日期 2022-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明