參考文獻 |
[1] 建築物耐風設計規範及解說,內政部營建署(2006),中華民國95年9月22日台內營字第0950805664號。
[2] Den Hartog J.P., Mechanical Vibrations, Fourth edition, New York: McGraw-Hill, (1956).
[3] Ioi T. and Ikeda K., “On the dynamic vibration damped absorber of the vibration system”, Bulletin of the Japanese Society of Mechanical Engineering, 21:64-71 (1978).
[4] Warburton G.B. and Ayorinde E.O., “Optimum absorber parameters for simple systems”, Earthquake Engineering and Structural Dynamics, 8:197-217 (1980).
[5] Ayorinde E.O. and Warburton G.B., “Minimizing structural vibrations with absorbers”, Earthquake Engineering and Structural Dynamics, 8:219-236 (1980).
[6] Warburton G.B., “Optimum absorber parameters for various combinations of response and excitation parameters”, Earthquake Engineering and Structural Dynamics, 10:381-401 (1982).
[7] Bakre S.V. and Jangid R.S., “Optimum parameters of tuned mass damper for damped main system”. Structural Control and Health Monitoring, 14:448-470 (2007).
[8] Lin C.C., Hu C.M., Wang J.F. and Hu R.Y., “Vibration Control Effectiveness of Passive Tuned Mass Dampers”, Journal of the Chinese Institute of Engineers, 17:367-376 (1994).
[9] Manbachi A., Cobbold R.S.C., “Development and application of piezoelectric materials for ultrasound generation and detection”, Ultrasound,19 (4): 187-196 (2011).
[10] Gautschi G., Piezoelectric sensorics: force, strain, pressure, acceleration and acoustic emission sensors, materials and amplifiers, Berlin: Springer (2002).
[11] “IEEE Standard on Piezoelectricity”, ANSI/IEEE Std 176-1987, ANSI/IEEE, 1987.
[12] Sirohi J. and Chopra I., “Fundamental Understanding of Piezoelectric Strain Sensors”, Journal of Intelligent Material Systems and Structures, 11(4): 246-257 (2000).
[13] Lu B. and Li Q. F., “System Identification and Control Design of a Piezoelectric-Actuated Cantilever Beam”, International Journal of Mechanical Engineering Education, 42(3): 233-250 (2014).
[14] Sunar M. and Al-Bedoor B.O., “Vibration measurement of a cantilever beam using root embedded piezoceramic sensor”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(2): 147-161 (2008).
[15] Beck B.S., Cunefare K.A., Ruzzene M. and Collet M., “Experimental Analysis of a Cantilever Beam with a Shunted Piezoelectric Periodic Array”, Journal of Intelligent Material Systems and Structures, 22(11): 1177-1187 (2011).
[16] Xu X.P., Han Q.K., Chu F.L. and Parker R.G., “Vibration suppression of a rotating cantilever beam under magnetic excitations by applying the magnetostrictive material”, Journal of Intelligent Material Systems and Structures, 30(4): 576-592 (2019).
[17] Zhao G.Y., Alujevic N., Bruno D. and Paul S., “Dynamic analysis and ℋ2 optimisation of a piezo-based tuned vibration absorber”, Journal of Intelligent Material Systems and Structures, 26(15): 1995-2010 (2015).
[18] Berardengo M., Manzoni S., Thomas O. and Vanali M., “Guidelines for the layout and tuning of piezoelectric resonant shunt with negative capacitances in terms of dynamic compliance, mobility and accelerance”, Journal of Intelligent Material Systems and Structures, 32(17): 2092-2107 (2021).
[19] Yang Q.S., Yang Y., Wang Q. and Peng L.L.., “Study on the fluctuating wind responses of constructing bridge towers with magnetorheological elastomer variable stiffness tuned mass damper”, Journal of Intelligent Material Systems and Structures, 33(2): 290-308 (2022).
[20] Erturk A. and Inman D.J., “On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters”, Journal of Intelligent Material Systems and Structures 19: 1311 (2008).
[21] Erturk A. and Inman D.J., “A distributed parameter Electromechanical model for cantilevered piezoelectric energy harvesters”, Journal of Vibration and Acoustics, 130(4):041002 (2008).
[22] Erturk A. and Inman D.J., “An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations”, Smart Materials and Structures, 18:025009 (2009).
[23] Hu G.B., Tang L.H., Liang J.R. and Das R., “Modelling of a cantilevered energy harvester with partial piezoelectric coverage and shunted to practical interface circuits”, Journal of Intelligent Material Systems and Structures, 30(13): 1896-1912 (2019).
[24] Zeng S., Zhang C.W., Wang K.F., Wang B.L. and Li S., “Analysis of delamination of unimorph cantilever piezoelectric energy harvesters”, Journal of Intelligent Material Systems and Structures, 29(9): 1875-1883 (2018).
[25] Leticia F.F.M., Miguel F.L.F. and Thomas C.A.K., “Theoretical and experimental modal analysis of a cantilever steel beam with a tip mass”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(7): 1535-1541 (2009).
[26] Song H.J., Choi Y.T. and Norman M.W., “Comparison of monolithic and composite piezoelectric material–based energy harvesting devices”, Journal of Intelligent Material Systems and Structures, 25(14):1825-1837(2014).
[27] Kaur N., Mahesh D. and Singamsetty S., “An experimental study on piezoelectric energy harvesting from wind and ambient structural vibrations for wireless structural health monitoring”, Advances in Structural Engineering, 23(5): 1010-1023 (2020).
[28] Friswell M.I., Ali S.F., Bilgen O., Adhikari S., Lees A.W and Litak G., “Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass”, Journal of Intelligent Material Systems and Structures, 23(13):1505-1521(2012).
[29] Reddy A.R., Umapathy M., Ezhilarasi D. and Gandhi U., “Improved energy harvesting from vibration by introducing cavity in a cantilever beam”, Journal of Vibration and Control, 22(13): 3057-3066 (2016).
[30] Fallahpasand S. and Dardel M., “Piezoelectric energy harvesting from highly flexible cantilever beam”, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 233(1): 71-92 (2018).
[31] Tan T., Yan Z., Lei H. and Sun W.P., “Geometric nonlinear distributed parameter model for cantilever-beam piezoelectric energy harvesters and structural dimension analysis for galloping mode”, Journal of Intelligent Material Systems and Structures, 328(20): 3066-3078 (2017).
[32] Bhalla S. and Soh C.K., “Electromechanical Impedance Modeling for Adhesively Bonded Piezo-Transducers”, Journal of Intelligent Material Systems and Structures, 15(12): 955-972 (2004).
[33] Bhalla S. and Moharana S., “A refined shear lag model for adhesively bonded piezo-impedance transducers”, Journal of Intelligent Material Systems and Structures, 24(1): 33-48 (2013).
[34] Tan T. and Yan Z.M., “Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters with inductive-resistive circuits and its application in galloping mode”, Smart Materials and Structures, 26 035062 (2017).
[35] Hwan S.Y., Washington G. and Danak A., “Modeling, Optimization and Design of Efficient Initially Curved Piezoceramic Unimorphs for Energy Harvesting Applications”, Journal of Intelligent Material Systems and Structures, 16(10): 877-888 (2005).
[36] Thonapalin P., Aimmanee S., Laoratanakul P. and Das R., “Thermomechanical Effects on Electrical Energy Harvested from Laminated Piezoelectric Devices”, Crystals, 11(2): 141 (2021).
[37] Cassidy I.L., Scruggs J.T., Behrens S. and Gavin H.P., “Design and experimental characterization of an electromagnetic transducer for large-scale vibratory energy harvesting applications”, Journal of Intelligent Material Systems and Structures, 22(17): 2009-2024 (2011).
[38] Yuan J.Y., Peng H., Chen J.H., Sun H.Y. and Zang C.Y., “A Dual-Mode Hybrid Step-Up Converter with Stable Output for Vibration Energy Harvesting”, Energies, 15(13): 4643 (2022).
[39] Xue X.M., Sun Q., Ma Q.G. and Wang J.J., “A Versatile Model for Describing Energy Harvesting Characteristics of Composite-Laminated Piezoelectric Cantilever Patches”, Sensors, 22(12): 4457 (2022).
[40] Karimi M., Tikani R., Ziaei-Rad S. and Mirdamadi H.R., “Experimental and theoretical studies on piezoelectric energy harvesting from low-frequency ambient random vibrations”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230(14): 2363-2375 (2016).
[41] Adhikari S. and Arnab B., “Enhanced low-frequency vibration energy harvesting with inertial amplifiers”, Journal of Intelligent Material Systems and Structures, 33(6): 822-838 (2022).
[42] Aldraihem O. and Baz A., “Energy Harvester with a Dynamic Magnifier”, Journal of Intelligent Material Systems and Structures, 22(6): 521-530 (2011).
[43] Rupp C.J., Dunn M.L. and Kurt M., “Analysis of Piezoelectric Energy Harvesting Systems with Non-linear Circuits Using the Harmonic Balance Method”, Journal of Intelligent Material Systems and Structures, 21(14): 1383-1396 (2010).
[44] Lajimi S.A.M. and Friswell M.I., “Energy harvesting from a non-linear standing beam–mass system: Two- versus one-mode approximations”, Journal of Intelligent Material Systems and Structures, 28(8): 1010-1022(2017).
[45] Sulbhewar L. and Raveendranath P., “A consistently efficient and accurate higher order shear deformation theory based finite element to model extension mode piezoelectric smart beams” Journal of Intelligent Material Systems and Structures, 27(9): 1231-1249(2016).
[46] Gedeon D. and Rupitsch S.J., “Finite element based system simulation for piezoelectric vibration energy harvesting devices”, Journal of Intelligent Material Systems and Structures, 29(7):1333-1347 (2017).
[47] Bisegna P. and Caruso G., “Mindlin-Type Finite Elements for Piezoelectric Sandwich Plates”, Journal of Intelligent Material Systems and Structures, 11(1): 14-25 (2000).
[48] Hajheidari P., Stiharu I. and Bhat R., “Performance of tapered cantilever piezoelectric energy harvester based on Euler–Bernoulli and Timoshenko Beam theories”, Journal of Intelligent Material Systems and Structures, 31(4): 487-502 (2019).
[49] Cui M.Y., Liu H.Z., Jiang H.L., Zheng Y.B., Wang X. and Liu W., “Active vibration optimal control of piezoelectric cantilever beam with uncertainties”, Measurement and Control, 0(0): 1-11 (2022).
[50] Biswal A.R., Roy T. and Behera R.K., “Optimal vibration energy harvesting from non-prismatic axially functionally graded piezolaminated cantilever beam using genetic algorithm”, Journal of Intelligent Material Systems and Structures, 28(14): 1957-1976 (2017).
[51] Gsell D., Feltrin G. and Motavalli M., “Adaptive Tuned Mass Damper based on Pre-stressable Leaf-springs”, Journal of Intelligent Material Systems and Structures, 18(8): 845-851 (2007).
[52] Jiang G. and Hanagan L.M., “Semi-active TMD with piezoelectric friction dampers in floor vibration control”, Smart Structures and Materials, 6169, 616915, (2006).
[53] Lai Y.A., Kim J.Y., Yang C.S.W. and Chung L.L., “A low-cost and efficient d33-mode piezoelectric tuned mass damper with simultaneously optimized electrical and mechanical tuning”, Journal of Intelligent Material Systems and Structures, 32(6): 678-696 (2021).
[54] 趙嘉仁,「懸臂梁形式壓電調諧質量阻尼器之研發與最佳化設計」,國立中央大學,碩士論文,民國110年。
[55] Hambley A.R., Electrical Engineering: Principles and Applications. Fifth Edition, USA, Pearson Education, (2010).
[56] Reddy J.N., An Introduction to The Finite Element Method. Third Edition, New York, McGraw-Hill, (2005).
[57] Chopra A.K., Dynamics of Structures, Theory and applications to earthquake engineering. Fourth edition, U.S.A, Pearson Education, (2013).
|