博碩士論文 109322001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:99 、訪客IP:18.117.7.6
姓名 曹運(Yun Tsao)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 懸臂梁形式壓電調諧質量阻尼器多自由度分析與最佳化設計之減振與能量擷取研究
相關論文
★ 主動式相位控制調諧質量阻尼器之研發與實驗驗證★ 相位控制之主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證
★ 懸臂梁形式壓電調諧質量阻尼器之 研發與最佳化設計★ 天鉤主動隔震系統應用於單自由度機構分析與實驗驗證
★ 天鉤主動隔震系統應用於非剛體設備物之分析與實驗驗證★ 以直接輸出回饋與參數更新迭代方法設計最佳化被動調諧質量阻尼器與多元調諧質量阻尼器
★ 考慮即時濾波與衝程限制之相位控制主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證★ 設備物應用衝程考量天鉤主動隔震系統之數值模擬分析及實驗驗證
★ 變斷面懸臂梁形式多元壓電調諧質量阻尼器於結構減振與能量擷取之最佳化設計與參數識別★ 考慮Kanai-Tajimi濾波器以直接輸出回饋進行隔震層阻尼係數之最佳化設計
★ 相位控制主動調諧質量阻尼器於非線性 Bouc-Wen Model 結構之分析★ 具凸面導軌之雙向偏心滾動隔震系統機構開發與試驗驗證
★ 雙向天鉤主動隔震系統之數值模擬分析及實驗驗證★ 天鉤主動隔震系統應用強化學習DDPG與直接輸出回饋之最佳化設計與分析
★ 相位控制多元主動調諧質量阻尼器於結構減震性能評估之數值模擬分析★ 倒擺懸臂梁形式多元壓電調諧質量阻尼器於結構減振與能量擷取之分析與實驗驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究對壓電懸臂梁形式之壓電調諧質量阻尼器(Piezoelectric-Tuned Mass Damper, Piezo-TMD),進行運動方程式推導及系統分析,再結合氣彈模型,設計壓電TMD之參數使其做為氣彈模型之調諧質量阻尼器使用,並進行數值模擬。首先將壓電本構方程式結合尤拉梁形式之懸臂梁結構,推導壓電懸臂梁力學與電路運動方程式,再利用有限元素概念將壓電懸臂梁分割成元素塊,並帶入多項式形狀函數推導,疊加形成矩陣形式之壓電懸臂梁運動方程式,最後於外加電路串聯電阻及電感,形成完整電路迴路。為了檢驗矩陣形式之推導結果是否符合真實情況,繪製其頻率反應函數圖,並與文獻提供之分布參數形式之頻率反應函數圖比較。壓電TMD之設計目的為:在吸收結構能量的同時,從中擷取能量—亦即發電效率為其重點。本文定義壓電阻尼比參數為判斷其發電效率之指標。接著對壓電TMD進行敏感度分析,了解哪些尺寸參數影響壓電阻尼比。由分析發現,僅固定總厚度調整壓電層與基底層比例將有最佳的厚度比達到最大壓電阻尼比,其餘尺寸參數不影響最大壓電阻尼比。由此可知單純增加壓電材料使用量無法提升最大壓電阻尼比,亦代表壓電TMD之發電效率有其上限。故為求最大減振效果,壓電TMD之設計流程與傳統質量阻尼器不同,應先決定阻尼比再求質量比。設計時,壓電懸臂梁之尺寸可預設一組初步的數值來計算其可達到之最大壓電阻尼比。再結合氣彈模型,利用傳統調諧質量阻尼器最佳阻尼比設計公式推算出其質量比,並使用直接搜尋法(Direct Search)做最佳化設計,找出結構速度H2-norm值最小時之懸臂梁長度、電阻及電感之組合,如此便完成壓電TMD之設計。利用設計出來之壓電TMD進行數值分析、繪製頻率反應函數圖,和以設計風力進行動力分析,可知壓電TMD可在減振的同時具備不錯的發電效率。最後依據分析壓電材料在懸臂梁上之發電特性,當壓電層以最佳的長度比例極化時,壓電層有最佳發電效率。以及在高模態時,不同的彎曲方向將降低發電效率。

關鍵字: 壓電懸臂梁、調諧質量阻尼器、有限元素模型、壓電材料、能量擷取、RLC電路、最佳化設計、H2-norm最佳化
摘要(英) In this study, the equation of motion and system analysis of a Piezoelectric-Tuned Mass Damper (Piezo-TMD) in the form of a piezoelectric cantilever beam are derived. The piezoelectric TMD is firstly derived from the piezoelectric constitutive equation combined with the cantilever beam according to the Euler–Bernoulli beam theory. Then, the piezoelectric cantilever beam is divided into element blocks with the finite element concept to superimpose in the form of a matrix equations. Afterward, the resistance and inductance are connected in series within the circuit to form a complete circuit loop. To verify the correctness of the derived matrix equations, the frequency response function is plotted to confirm the consistency with reference which is derived according to distributed parameters. The Piezo-TMD is not only designed to reduce the vibration of the structure, but also to harvest the vibration energy of the main structure. Therefore, the power generation efficiency is also considered as a second priority in design process. The piezoelectric damping ratio defined in this paper can be used as an indicator to represent the power generation efficiency. In order to understand which parameters will affect the maximum piezoelectric damping ratio, the sensitivity analysis of parameters of the Piezo-TMD is conducted. Accordioning to the sensitivity analysis, only the thickness ratio of the piezoelectric layer to the base layer will affect the maximum piezoelectric damping ratio. The best thickness layer ratio can be found to achieve the maximum piezoelectric damping ratio. The analysis results also shown that simply increasing the amount of piezoelectric materials cannot increase the piezoelectric damping ratio so that the piezoelectric damping ratio has its upper limit, that is, the power generation efficiency has its upper bound. Because of the limitation of the maximum piezoelectric damping ratio, the proposed design method of the Piezo-TMD is different from the traditional TMD, the damping ratio is determined before the mass ratio. In the design, each dimension of the piezoelectric cantilever beam can be preset as a preliminary value, and the maximum piezoelectric damping ratio can be calculated accordingly. The mass ratio is therefore calculated by the optimum damping ratio design formula of the traditional tuned mass damper. To optimize the other parameters of the Piezo-TMD, the Direct Search method is used to find the optimum beam length, resistance, and inductance when the structural velocity H2-norm is minimum. The designed Piezo-TMD is analyzed numerically, the frequency response function and time history analysis of subjected to wind force shows that the Piezo-TMD performs well in both structural vibration reduction and power generation. Finally, according to the analysis of polarized range of the piezoelectric material on the cantilever beam, the best polarized length ratio can be found to achieve maximum power generation efficiency in the first mode. However, the power generation efficiency will be reduced in high modes due to the different bending directions.

Keywords: piezoelectric cantilever beam, tuned mass dampers, finite element model, piezoelectric materials, energy harvesting, RLC circuit, optimal design, H2-norm optimization
關鍵字(中) ★ 壓電懸臂梁
★ 調諧質量阻尼器
★ 有限元素模型
★ 壓電材料
★ 能量擷取
★ RLC電路
★ 最佳化設計
關鍵字(英)
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 x
符號說明 xi
第一章、 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-3 研究內容 6
第二章、 壓電懸臂梁方程式推導 7
2-1 壓電材料組成律 7
2-2 壓電懸臂梁方程式推導 11
2-3 壓電懸臂梁運動方程式 15
2-4 壓電懸臂梁之有限元素矩陣及壓電運動方程式 18
2-5 多元素矩陣疊加之壓電懸臂梁 24
2-6 壓電懸臂梁外接質量塊與外加電路 33
2-7 狀態空間表示法 36
2-8 靜濃縮單自由度化壓電運動方程式 38
2-9 特徵分析 41
2-10 頻率反應函數 43
第三章、 壓電懸臂梁數值模擬 45
3-1 頻率反應函數比較 45
3-1-1 分段數量之頻率反應函數比較 45
3-1-2 分布參數形狀函數和分段元素組成之比較 49
3-2 壓電懸臂梁參數敏感度分析 58
第四章、 氣彈模型加裝壓電TMD之模擬 69
4-1 氣彈模型 69
4-1-1 氣彈模型運動方程式 72
4-1-2 頻率反應函數 72
4-1-3 氣彈模型空構架動力分析 74
4-2 氣彈模型接上壓電TMD 77
4-2-1 氣彈模型加裝壓電TMD之運動方程式 77
4-2-2 最佳化設計壓電TMD 79
4-2-3 簡易設計壓電TMD 81
4-3 數值分析 86
4-3-1 壓電TMD參數 86
4-3-2 頻率反應函數 88
4-3-3 設計風力歷時分析 94
4-3-4 壓電TMD離頻效應之敏感度分析 101
第五章、 極化層之影響 111
5-1 調整壓電層極化長度 111
5-2 高模態變形 113
第六章、 結論與建議 118
6-1 結論 118
6-2 建議 121
參考文獻 122
附錄A、靜濃縮(static condensation) 129
附錄B、直接搜尋法 130
B-1直接搜尋法之概念 130
B-2直接搜尋法之應用 132
參考文獻 [1] 建築物耐風設計規範及解說,內政部營建署(2006),中華民國95年9月22日台內營字第0950805664號。
[2] Den Hartog J.P., Mechanical Vibrations, Fourth edition, New York: McGraw-Hill, (1956).
[3] Ioi T. and Ikeda K., “On the dynamic vibration damped absorber of the vibration system”, Bulletin of the Japanese Society of Mechanical Engineering, 21:64-71 (1978).
[4] Warburton G.B. and Ayorinde E.O., “Optimum absorber parameters for simple systems”, Earthquake Engineering and Structural Dynamics, 8:197-217 (1980).
[5] Ayorinde E.O. and Warburton G.B., “Minimizing structural vibrations with absorbers”, Earthquake Engineering and Structural Dynamics, 8:219-236 (1980).
[6] Warburton G.B., “Optimum absorber parameters for various combinations of response and excitation parameters”, Earthquake Engineering and Structural Dynamics, 10:381-401 (1982).
[7] Bakre S.V. and Jangid R.S., “Optimum parameters of tuned mass damper for damped main system”. Structural Control and Health Monitoring, 14:448-470 (2007).
[8] Lin C.C., Hu C.M., Wang J.F. and Hu R.Y., “Vibration Control Effectiveness of Passive Tuned Mass Dampers”, Journal of the Chinese Institute of Engineers, 17:367-376 (1994).
[9] Manbachi A., Cobbold R.S.C., “Development and application of piezoelectric materials for ultrasound generation and detection”, Ultrasound,19 (4): 187-196 (2011).
[10] Gautschi G., Piezoelectric sensorics: force, strain, pressure, acceleration and acoustic emission sensors, materials and amplifiers, Berlin: Springer (2002).
[11] “IEEE Standard on Piezoelectricity”, ANSI/IEEE Std 176-1987, ANSI/IEEE, 1987.
[12] Sirohi J. and Chopra I., “Fundamental Understanding of Piezoelectric Strain Sensors”, Journal of Intelligent Material Systems and Structures, 11(4): 246-257 (2000).
[13] Lu B. and Li Q. F., “System Identification and Control Design of a Piezoelectric-Actuated Cantilever Beam”, International Journal of Mechanical Engineering Education, 42(3): 233-250 (2014).
[14] Sunar M. and Al-Bedoor B.O., “Vibration measurement of a cantilever beam using root embedded piezoceramic sensor”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(2): 147-161 (2008).
[15] Beck B.S., Cunefare K.A., Ruzzene M. and Collet M., “Experimental Analysis of a Cantilever Beam with a Shunted Piezoelectric Periodic Array”, Journal of Intelligent Material Systems and Structures, 22(11): 1177-1187 (2011).
[16] Xu X.P., Han Q.K., Chu F.L. and Parker R.G., “Vibration suppression of a rotating cantilever beam under magnetic excitations by applying the magnetostrictive material”, Journal of Intelligent Material Systems and Structures, 30(4): 576-592 (2019).
[17] Zhao G.Y., Alujevic N., Bruno D. and Paul S., “Dynamic analysis and ℋ2 optimisation of a piezo-based tuned vibration absorber”, Journal of Intelligent Material Systems and Structures, 26(15): 1995-2010 (2015).
[18] Berardengo M., Manzoni S., Thomas O. and Vanali M., “Guidelines for the layout and tuning of piezoelectric resonant shunt with negative capacitances in terms of dynamic compliance, mobility and accelerance”, Journal of Intelligent Material Systems and Structures, 32(17): 2092-2107 (2021).
[19] Yang Q.S., Yang Y., Wang Q. and Peng L.L.., “Study on the fluctuating wind responses of constructing bridge towers with magnetorheological elastomer variable stiffness tuned mass damper”, Journal of Intelligent Material Systems and Structures, 33(2): 290-308 (2022).
[20] Erturk A. and Inman D.J., “On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters”, Journal of Intelligent Material Systems and Structures 19: 1311 (2008).
[21] Erturk A. and Inman D.J., “A distributed parameter Electromechanical model for cantilevered piezoelectric energy harvesters”, Journal of Vibration and Acoustics, 130(4):041002 (2008).
[22] Erturk A. and Inman D.J., “An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations”, Smart Materials and Structures, 18:025009 (2009).
[23] Hu G.B., Tang L.H., Liang J.R. and Das R., “Modelling of a cantilevered energy harvester with partial piezoelectric coverage and shunted to practical interface circuits”, Journal of Intelligent Material Systems and Structures, 30(13): 1896-1912 (2019).
[24] Zeng S., Zhang C.W., Wang K.F., Wang B.L. and Li S., “Analysis of delamination of unimorph cantilever piezoelectric energy harvesters”, Journal of Intelligent Material Systems and Structures, 29(9): 1875-1883 (2018).
[25] Leticia F.F.M., Miguel F.L.F. and Thomas C.A.K., “Theoretical and experimental modal analysis of a cantilever steel beam with a tip mass”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(7): 1535-1541 (2009).
[26] Song H.J., Choi Y.T. and Norman M.W., “Comparison of monolithic and composite piezoelectric material–based energy harvesting devices”, Journal of Intelligent Material Systems and Structures, 25(14):1825-1837(2014).
[27] Kaur N., Mahesh D. and Singamsetty S., “An experimental study on piezoelectric energy harvesting from wind and ambient structural vibrations for wireless structural health monitoring”, Advances in Structural Engineering, 23(5): 1010-1023 (2020).
[28] Friswell M.I., Ali S.F., Bilgen O., Adhikari S., Lees A.W and Litak G., “Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass”, Journal of Intelligent Material Systems and Structures, 23(13):1505-1521(2012).
[29] Reddy A.R., Umapathy M., Ezhilarasi D. and Gandhi U., “Improved energy harvesting from vibration by introducing cavity in a cantilever beam”, Journal of Vibration and Control, 22(13): 3057-3066 (2016).
[30] Fallahpasand S. and Dardel M., “Piezoelectric energy harvesting from highly flexible cantilever beam”, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 233(1): 71-92 (2018).
[31] Tan T., Yan Z., Lei H. and Sun W.P., “Geometric nonlinear distributed parameter model for cantilever-beam piezoelectric energy harvesters and structural dimension analysis for galloping mode”, Journal of Intelligent Material Systems and Structures, 328(20): 3066-3078 (2017).
[32] Bhalla S. and Soh C.K., “Electromechanical Impedance Modeling for Adhesively Bonded Piezo-Transducers”, Journal of Intelligent Material Systems and Structures, 15(12): 955-972 (2004).
[33] Bhalla S. and Moharana S., “A refined shear lag model for adhesively bonded piezo-impedance transducers”, Journal of Intelligent Material Systems and Structures, 24(1): 33-48 (2013).
[34] Tan T. and Yan Z.M., “Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters with inductive-resistive circuits and its application in galloping mode”, Smart Materials and Structures, 26 035062 (2017).
[35] Hwan S.Y., Washington G. and Danak A., “Modeling, Optimization and Design of Efficient Initially Curved Piezoceramic Unimorphs for Energy Harvesting Applications”, Journal of Intelligent Material Systems and Structures, 16(10): 877-888 (2005).
[36] Thonapalin P., Aimmanee S., Laoratanakul P. and Das R., “Thermomechanical Effects on Electrical Energy Harvested from Laminated Piezoelectric Devices”, Crystals, 11(2): 141 (2021).
[37] Cassidy I.L., Scruggs J.T., Behrens S. and Gavin H.P., “Design and experimental characterization of an electromagnetic transducer for large-scale vibratory energy harvesting applications”, Journal of Intelligent Material Systems and Structures, 22(17): 2009-2024 (2011).
[38] Yuan J.Y., Peng H., Chen J.H., Sun H.Y. and Zang C.Y., “A Dual-Mode Hybrid Step-Up Converter with Stable Output for Vibration Energy Harvesting”, Energies, 15(13): 4643 (2022).
[39] Xue X.M., Sun Q., Ma Q.G. and Wang J.J., “A Versatile Model for Describing Energy Harvesting Characteristics of Composite-Laminated Piezoelectric Cantilever Patches”, Sensors, 22(12): 4457 (2022).
[40] Karimi M., Tikani R., Ziaei-Rad S. and Mirdamadi H.R., “Experimental and theoretical studies on piezoelectric energy harvesting from low-frequency ambient random vibrations”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230(14): 2363-2375 (2016).
[41] Adhikari S. and Arnab B., “Enhanced low-frequency vibration energy harvesting with inertial amplifiers”, Journal of Intelligent Material Systems and Structures, 33(6): 822-838 (2022).
[42] Aldraihem O. and Baz A., “Energy Harvester with a Dynamic Magnifier”, Journal of Intelligent Material Systems and Structures, 22(6): 521-530 (2011).
[43] Rupp C.J., Dunn M.L. and Kurt M., “Analysis of Piezoelectric Energy Harvesting Systems with Non-linear Circuits Using the Harmonic Balance Method”, Journal of Intelligent Material Systems and Structures, 21(14): 1383-1396 (2010).
[44] Lajimi S.A.M. and Friswell M.I., “Energy harvesting from a non-linear standing beam–mass system: Two- versus one-mode approximations”, Journal of Intelligent Material Systems and Structures, 28(8): 1010-1022(2017).
[45] Sulbhewar L. and Raveendranath P., “A consistently efficient and accurate higher order shear deformation theory based finite element to model extension mode piezoelectric smart beams” Journal of Intelligent Material Systems and Structures, 27(9): 1231-1249(2016).
[46] Gedeon D. and Rupitsch S.J., “Finite element based system simulation for piezoelectric vibration energy harvesting devices”, Journal of Intelligent Material Systems and Structures, 29(7):1333-1347 (2017).
[47] Bisegna P. and Caruso G., “Mindlin-Type Finite Elements for Piezoelectric Sandwich Plates”, Journal of Intelligent Material Systems and Structures, 11(1): 14-25 (2000).
[48] Hajheidari P., Stiharu I. and Bhat R., “Performance of tapered cantilever piezoelectric energy harvester based on Euler–Bernoulli and Timoshenko Beam theories”, Journal of Intelligent Material Systems and Structures, 31(4): 487-502 (2019).
[49] Cui M.Y., Liu H.Z., Jiang H.L., Zheng Y.B., Wang X. and Liu W., “Active vibration optimal control of piezoelectric cantilever beam with uncertainties”, Measurement and Control, 0(0): 1-11 (2022).
[50] Biswal A.R., Roy T. and Behera R.K., “Optimal vibration energy harvesting from non-prismatic axially functionally graded piezolaminated cantilever beam using genetic algorithm”, Journal of Intelligent Material Systems and Structures, 28(14): 1957-1976 (2017).
[51] Gsell D., Feltrin G. and Motavalli M., “Adaptive Tuned Mass Damper based on Pre-stressable Leaf-springs”, Journal of Intelligent Material Systems and Structures, 18(8): 845-851 (2007).
[52] Jiang G. and Hanagan L.M., “Semi-active TMD with piezoelectric friction dampers in floor vibration control”, Smart Structures and Materials, 6169, 616915, (2006).
[53] Lai Y.A., Kim J.Y., Yang C.S.W. and Chung L.L., “A low-cost and efficient d33-mode piezoelectric tuned mass damper with simultaneously optimized electrical and mechanical tuning”, Journal of Intelligent Material Systems and Structures, 32(6): 678-696 (2021).
[54] 趙嘉仁,「懸臂梁形式壓電調諧質量阻尼器之研發與最佳化設計」,國立中央大學,碩士論文,民國110年。
[55] Hambley A.R., Electrical Engineering: Principles and Applications. Fifth Edition, USA, Pearson Education, (2010).
[56] Reddy J.N., An Introduction to The Finite Element Method. Third Edition, New York, McGraw-Hill, (2005).
[57] Chopra A.K., Dynamics of Structures, Theory and applications to earthquake engineering. Fourth edition, U.S.A, Pearson Education, (2013).
指導教授 賴勇安(Yong-An Lai) 審核日期 2022-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明