博碩士論文 109322012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.118.10.37
姓名 洪良杰(Liang-Chieh Haung)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 損傷定位向量於結構健康診斷之應用
(Application of Damage Locating Vector Method on Structure Health Diagnosis)
相關論文
★ 貼片補強構件之層間應力分析★ 軌道不整檢測及識別方法
★ 混凝土結構分析之三維等效單軸組成材料模型★ 卵形顆粒法向與切向接觸之等效線性彈簧值之推導與驗證
★ 以四面體離散化多面體系統之接觸分析與模擬★ 軌道車輛三維動態脫軌係數之在線量測理論
★ 向量式DKMT厚殼元推導與模擬★ 向量式預力混凝土二維剛架元之數值模擬與驗證
★ 向量式有限元應用於懸索橋非線性動力分析★ 蛋形顆粒群之流固耦合分析
★ 複合版梁元素分析模型之橋梁動態識別法★ 三維等效單軸應變與應力之材料組成模型
★ 人行吊橋的現有內力評估及動力分析★ 薄殼結構非線性運動之向量式有限元分析法
★ 雷射掃描技術於鋼軌磨耗之檢測★ 動態加載下的等效單軸應變與 應力材料組成模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-12-31以後開放)
摘要(中) 本研究使用 Bernal 所提出的損傷定位向量法(Damage Locating Vector Method),以外力激振之方式配合頻率域分解法(Frequency Domain Decomposition, FDD)進行結構損傷之識別,欲發展出一套外力激發結構振動後,以量測結果為依據之結構損傷識別之技術。DLV 法主要概念為針對系統損傷前後之柔度差異矩陣為基礎的結構損傷偵測技術,識別出於特定荷載下,其應力為零之構件,並將其判斷為破壞狀態。由數值模擬的結果可知,若結構之柔度矩陣與理論解完全相符之情形下,DLV 法無論於一維、二維亦或是三維之模型中,皆可明確地診斷出結構物受損之位置,且由加權應力指標(Weighted Stress Index, WSI)作為構件是否具有損傷之判別,即使結構中受損部位僅具有 10%之損傷,其方法依舊能夠準確偵測,可見 DLV 法具有相當之敏感性。而本文中亦模擬不同外力情形下(敲擊力與地震力),以各節點的加速度歷時資料進行 FDD 分析,找出結構自然頻率與其對應下之模態,用以代入 DLV 法中,以此進行結構損傷偵測之分析。
摘要(英) In this study, the Damage Locating Vector Method proposed by Bernal is used to identify structure damage. Using external force excitation and Frequency Domain Decomposition (FDD) to develop a set of structure damage identification technology
based on the measurement results after the external force stimulating on the structure. The main concept of the DLV method is based on the flexibility matrix difference between systems before and after damage, identifying components with zero stress under a specific load, and judging them as a failure state. From the numerical simulation results, it can be seen that if the flexibility matrix of the structure is completely consistent with the theoretical solution, the DLV method can clearly diagnose the damage of the structure whether in one-dimensional, two-dimensional or threedimensional models. The damaged components can be judged by the Weighted Stress Index (WSI). Even if the damaged part in the structure has only 10% damage, the
method can still accurately detect it. So, it can be seen that DLV method has considerable sensitivity. In this paper, different external forces (impact force and earthquake force) are also simulated, and FDD analysis is carried out with the acceleration chronological data of each node to find out the natural frequencies of the structure and their corresponding mode shapes, which can be substituted into the DLV method and do the analysis of structural damage detection.
關鍵字(中) ★ 損傷識別
★ 結構破壞偵測
★ DLV 法
★ 系統識別
★ 柔度矩陣
★ 頻率域分解法
★ 敲擊測試法
關鍵字(英) ★ Damage Identification
★ Structural Damage Detection
★ Damage Locating Vector Method
★ System Identification
★ Flexibility Matrix
★ Frequency Domain Decomposition
★ Tapping test
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 X
第1章 緒論 1
1.1 研究背景與動機 1
1.2 研究方法 2
1.3 研究內容 5
第2章 文獻回顧 6
2.1 模態分析 6
2.2 結構健康診斷之發展 7
第3章 DLV損傷識別法 15
3.1 前言 15
3.2 DLV損傷探測分析理論 15
3.3 DLV法之特性證明 18
3.4 DLV法之應用 21
第4章 結構系統參數識別 23
4.1 前言 23
4.2 頻率域分解法 (FREQUENCY DOMAIN DECOMPOSITION, FDD) 23
4.3 加速度數據經頻率域分解後提取頻率與模態 26
4.4 結構勁度矩陣與柔度矩陣之建立 28
第5章 DLV識別法之數值模擬分析 32
5.1 前言 32
5.2 一維球-棍剪力模型(BALL-AND-STICK MODEL) 32
5.2.1 以SAP2000模擬一維模型中單一部位損傷之情形 33
5.2.2 以SAP2000模擬一維模型中多部位損傷之情形 41
5.2.3以敲擊測試法進行系統識別並偵測單一損傷點 49
5.2.4 以敲擊測試法進行系統識別並偵測多部位損傷點 64
5.2.5 以結構之地震反應進行系統識別並偵測多部位損傷點 71
5.3 二維桁架模型 79
5.3.1 以SAP2000模擬桁架模型中單一損傷之偵測 79
5.3.2 以SAP2000模擬桁架模型中多重損傷之偵測 91
5.3.3 以敲擊測試法進行系統識別並進行單一損傷之偵測 98
5.3.4 以敲擊測試法進行系統識別並進行多重損傷之偵測 114
5.4 三維桁架模型 123
5.4.1 以SAP2000模擬三維桁架模型中具多損傷之偵測 124
5.4.2 以結構之地震反應進行系統識別並偵測多部位損傷點 126
第6章 結論與建議 134
參考文獻 137
參考文獻 1. Avitabile, P. (2001). Experimental modal analysis. Sound and vibration, 35(1), 20-31.
2. Berman, A., & Flannelly, W. G. (1971). Theory of incomplete models of dynamic structures. AIAA Journal, 9(8), 1481-1487.
3. Bernal, D. (2000). Damage localization using load vectors. Paper presented at the European COST F3 Conference.
4. Bernal, D. (2006). Flexibility-based damage localization from stochastic realization results. Journal of Engineering Mechanics, 132(6), 651-658.
5. Brincker, R., Ventura, C. E., & Andersen, P. (2001). Damping estimation by frequency domain decomposition. Paper presented at the Proceedings of IMAC 19: A Conference on Structural Dynamics: februar 5-8, 2001, Hyatt Orlando, Kissimmee, Florida, 2001.
6. Brincker, R., Zhang, L., & Andersen, P. (2001). Modal identification of output-only systems using frequency domain decomposition. Smart Materials and Structures, 10(3), 441.
7. Cerri, M., & Vestroni, F. (2000). Detection of damage in beams subjected to diffused cracking. Journal of Sound and Vibration, 234(2), 259-276.
8. Chen, J.-C., & Garba, J. A. (1988). On-orbit damage assessment for large space structures. AIAA Journal, 26(9), 1119-1126.
9. Chou, J.-H., & Ghaboussi, J. (2001). Genetic algorithm in structural damage detection. Computers & structures, 79(14), 1335-1353.
10. Duan, Z., Yan, G., Ou, J., & Spencer, B. F. (2005). Damage localization in ambient vibration by constructing proportional flexibility matrix. Journal of Sound and Vibration, 284(1-2), 455-466.
11. Dutta, A., & Talukdar, S. (2004). Damage detection in bridges using accurate modal parameters. Finite Elements in Analysis and Design, 40(3), 287-304.
12. Ewins, D. J. (2009). Modal testing: theory, practice and application: John Wiley & Sons.
13. Hou, Z., Noori, M. N., & St Amand, R. (2000). Wavelet-based approach for structural damage detection. Journal of Engineering Mechanics, 126(7), 677.
14. Ibrahim, S. R. (1986). Double least squares approach for use in structural modal identification. AIAA Journal, 24(3), 499-503.
15. Lim, T. W., & Kashangaki, T. A. L. (1994). Structural damage detection of space truss structures using best achievable eigenvectors. AIAA Journal, 32(5), 1049-1057. doi: 10.2514/3.12093
16. Messina, A., Williams, E., & Contursi, T. (1998). Structural damage detection by a sensitivity and statistical-based method. Journal of Sound and Vibration, 216(5), 791-808.
17. Peeters, B., & De Roeck, G. (1999). Reference-based stochastic subspace identification for output-only modal analysis. Mechanical Systems and Signal Processing, 13(6), 855-878.
18. Ratcliffe, C. P. (1997). Damage detection using a modified Laplacian operator on mode shape data. Journal of Sound and Vibration, 204(3), 505-517.
19. Schwarz, B. J., & Richardson, M. H. (1999). Experimental modal analysis. CSI Reliability week, 35(1), 1-12.
20. Silva, J. M., Maia, N. M., & Silva, J. (1997). Theoretical and experimental modal analysis. England: Research Studies Press Ltd.
21. Tan, Z. X., Thambiratnam, D., Chan, T., & Razak, H. A. (2017). Detecting damage in steel beams using modal strain energy based damage index and Artificial Neural Network. Engineering Failure Analysis, 79, 253-262.
22. Toksoy, T., & Aktan, A. (1994). Bridge-condition assessment by modal flexibility. Experimental Mechanics, 34(3), 271-278.
23. Udny Yule, G. (1927). On a method of investigating periodicities in disturbed series, with special reference to Wolfer′s sunspot numbers. Philosophical Transactions of the Royal Society of London Series A, 226, 267-298.
24. Vandiver, J. (1977). By Measurement of Dynamic Response.
25. Wang, X., Hu, N., Fukunaga, H., & Yao, Z. (2001). Structural damage identification using static test data and changes in frequencies. Engineering Structures, 23(6), 610-621.
26. Yan, Y., Cheng, L., Wu, Z., & Yam, L. (2007). Development in vibration-based structural damage detection technique. Mechanical Systems and Signal Processing, 21(5), 2198-2211.
27. 李中原(2012)。應用破壞定位向量法於土木結構之探討。未出版之碩士論文,國立交通大學土木工程學系,新竹市。
28. 凃哲維(2008)。DLV法在結構破壞偵測之應用。未出版之碩士論文,國立交通大學土木工程系所,新竹市。
指導教授 王仲宇(Chung-Yue Wang) 審核日期 2022-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明