博碩士論文 109621019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:168 、訪客IP:3.133.125.148
姓名 王智寬(Chih-Kuan Wang)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 高垂直解析度行星邊界層資料同化及其對氣象條件和空氣品質模擬的影響
(PBL data assimilation with T-POMDA high vertical-resolution observation and its impact on meteorological and air-quality simulation)
相關論文
★ 利用WRF-LETKF同化系統探討掩星折射率觀測對於強降水事件預報之影響★ 改善區域系集卡爾曼濾波器在颱風同化及預報中的spin-up問題-2008年颱風辛樂克個案研究
★ LETKF加速就位法於颱風同化預報之應用★ 利用系集重新定位法改善颱風路徑預報-2011年南瑪都颱風個案研究
★ 利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善定量降水即時預報:莫拉克颱風(2009)★ 利用系集資料同化系統估算區域大氣化學耦合模式中trace物種之排放與吸收:以CO2為例
★ OSSE實驗架構下利用系集預報敏感度工具探討觀測對於颱風路徑預報及結構之影響★ 利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善短期定量降雨預報: SoWMEX IOP8 個案分析
★ 利用系集重新定位法改善對流尺度定量降水即時預報:2009年莫拉克颱風個案研究★ LAPS 短時(0-6小時)系集降水機率預報之評估與應用
★ 利用辛樂克颱風(2008)建立的觀測系統模擬實驗評估系集奇異向量在颱風系集預報之應用★ 雷達資料同化於多重尺度天氣系統(梅雨)的強降雨預報影響:SoWMEX IOP#8 個案研究
★ 基於高解析度系集卡爾曼濾波器之渦旋初始化及其對於颱風強度預報之影響:2010年梅姬颱風個案研究★ 系集轉換卡爾曼漸進式平滑器在資料同化之應用
★ 不同微物理方案在雲可解析模式的系集預報分析: SoWMEX-IOP8 個案★ 利用正交向量改善系集卡爾曼濾波器之系集空間及其對同化與預報之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-1以後開放)
摘要(中) 本研究針對在台灣冬季實行的觀測實驗(Taiwan atmospheric PBL Observation, Modeling, and Data Assimilation)或稱T-POMDA,獲得的高垂直解析度行星邊界層觀測資料進行資料同化實驗並分析其對於邊界層分析場、預報及空氣品質模擬的影響作系列的驗證。同化觀測包含微型探空(Aerosond)、無人機(UAV)和剖風儀。本研究提出在WRF局地化系集卡爾曼濾波系統(WRF-LETKF)下,邊界層高解析度觀測系集資料同化的策略。包含變數相關性的局地化(variable localization)和隨流場變化的觀測誤差斜方差矩陣估計法(Adaptive Observation Error Inflation, AOEI)。
由於物理參數化的限制,近地面溫度與風場有不同於真實世界的相關性。跨變數更新會降低同化變數預報的能力,因為錯誤的跨變數增量(unobserved variable increment)造成相反於同化變數增量(observed variable increment)的物理作用,並且在後續的預報中限制同化變數增量的效益。結果顯示進行跨變數相關性的局地化有助於維持同化變數的效果,並且增進同化變數的預報能力。此外,無人機的溫度觀測採用AOEI的方法估計其觀測誤差斜方差矩陣,以克服在複雜地形的邊界層下,溫度增量(innovation)容易較大的問題。 AOEI 法藉由ensemble spread擴張觀測誤差,結果顯示壓制分析場中過大的增量(increment)有助於減緩同化所造成的非物理性流場,並且增進熱力主導的海陸風模擬。
藉WRF-LETKF系統所估計出的氣象分析場將提供予WRF-CMAQ空氣品質模擬
iii
的氣象參考場使用。同化邊界層中變化快速的風場調整山坡上的垂直環流結構,使得污染物沿地形的垂直傳輸獲得改善。日間混和層內上升氣流的減緩使臺中市及山坡上有較多的污染物累積,中央山脈山壁上的上升氣流則受到加強,沿地形傳遞山腳混和層內的污染物自山頂附近,形成雙層分布的結構。夜間山風的加強使得山腳與平地有較高的穩定度,易於累積污染物。此外,日間傳輸至高層的污染物藉由此下沉氣流再次回到地表加劇夜間高污染事件。同化邊界層溫度則調整熱力主導的海陸風與山谷風結構,調整地面夜間過冷的情況,減弱過強的陸風使污染物較容易滯留於陸地上。並且臺中盆地與大肚臺地間的溫度梯度也受到加強,增加污染物向盆地內傳入的通量。
摘要(英) This study investigates the impact of assimilating the high vertical-resolution observations on the Planetary Boundary Layer (PBL) analysis, forecast, and air quality prediction during the Taiwan Air Pollution Modeling and Data assimilation (T-POMDA) experiment. The observations include wind profilers, and unmanned aerial vehicles (UAV), and Aerosond collected from 16 to 17 March 2021. The assimilation is conducted with the Weather Research and Forecasting model-Local Ensemble Transform Kalman Filter (WRF-LETKF) with rapid update cycles. Assimilation strategies with variable localization and adaptive observation error variance inflation (AOEI) are adopted to highlight the impact of assimilating the PBL observations with a high vertical resolution.
Assimilating the wind observations from wind profilers and Aerosond can improve the PBL wind structure over central Taiwan. However, the near-surface temperature analysis degraded. The cross-variable error correlation is opposed to the nature which will prevent the observed variable to correct the model field. Applying variable error covariance localization becomes crucial that maintains the impact of wind assimilation and improves the forecast.
In addition, the impact of the UAV temperature observation is optimized by applying AOEI to improve the estimation of the representative error because the large innovation occurred easily in PBL due to the high variation of temperature and cold bias in the simulation. The result shows that the suppression of large increment can prevent the unrealistic flow in the analysis. Then it improves the thermal-direct land-sea breeze
v
simulation.
The WRF-LETKF analysis is used to drive the Community Multiscale Air Quality Model (CMAQ) to obtain the air quality simulation. The assimilation of wind observation with high vertical resolution corrects the structure of vertical circulation near the terrain which better represents the vertical transportation of the pollutants. During the daytime, the suppression of upslope wind in mixing layer causes more pollutants accumulated in Taichung and hillside. At the mountain wall of Central Mountain Range (CMR), upslope wind is intensified and transports the pollutants in mixing layer to the top of mountain. Finally, the polluted parcels separate to two parts. During the nighttime, the intensification of mountain breeze leads to more stable environment at hillside which accumulates pollutants easier. Furthermore, the pollutants at upper level transport downward and intensify the pollution event in the plain. The assimilation of temperature observation corrects the thermal-direct land-sea breeze and mountain-valley breeze. The correction of overcooling at night suppresses the land breeze and prevents the pollutants to diffuse offshore. Stronger temperature gradient between Taichung Basin and Dadu Tableland increases the transportation of pollutants from the coastline which intensifies the PM2.5 concentration in the basin.
關鍵字(中) ★ 邊界層資料同化
★ 局地化系集卡爾曼濾波系統
★ 空氣品質模擬
★ 邊界層高垂直解析度觀測
關鍵字(英) ★ PBL Data assimilation
★ WRF-LETKF
★ Air-quality simulation
★ PBL observation with high vertical resolution
論文目次 摘要 i
Abstract iii
Acknowledgement v
Table of Contents vi
List of Tables viii
List of Figures viii
1. Introduction 1
2. Methodology 5
2.1 WRF-LETKF Data Assimilation System 5
2.1.1 Weather Research and Forecasting model (WRF) 5
2.1.2 Yonsei University (YSU) scheme 6
2.1.3 Asymmetric Convective Model version 2 (ACM2) 7
2.1.4 Local Ensemble Transform Kalman Filter (LETKF) 7
2.2 WRF-CMAQ system 8
2.2.1 Community Multiscale Air Quality modeling system (CMAQ) 9
2.3 Re-sampling of observations 9
2.3.1 Superobbing 10
2.3.2 Data thinning 10
2.3.3 Vertical filtering 11
2.4 Localization of background error covariance 11
2.4.1 Spatial error covariance localization 12
2.4.2 Variable localization 12
2.5 Observation Error covariance inflation (R inflation) 13
3. Assimilation of T-POMDA PBL observation 15
3.1 Experimental setup 15
3.2 Overview of severe pollution event from 16th to 17th in March 2021 17
3.3 Variable Localization (VL) on temperature and wind in PBL 20
3.4 Estimation of observation error in PBL 22
3.5 Performance of Analysis mean 24
4. Impact on Air quality prediction 27
4.1 Improvement of PM2.5 from wind assimilation and the impact of mountain circulation 27
4.2 Improvement of PM2.5 from temperature assimilation 30
5. Conclusions and Future Work 33
5.1 Conclusions 33
5.2 Future work 36
Reference 38
Tables 47
Figure 49
參考文獻 Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.
Annan, J. D., Lunt, D. J., Hargreaves, J. C., & Valdes, P. J. (2005). Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter. Nonlin. Processes Geophys., 12(3), 363-371. https://doi.org/10.5194/npg-12-363-2005
Atkinson, R. W., Kang, S., Anderson, H. R., Mills, I. C., & Walton, H. A. (2014). Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax, 69(7), 660-665. https://doi.org/10.1136/thoraxjnl-2013-204492
Baek, S.-J., Hunt, B. R., Kalnay, E., Ott, E., & Szunyogh, I. (2006). Local ensemble Kalman filtering in the presence of model bias. Tellus A: Dynamic Meteorology and Oceanography, 58(3), 293-306. https://doi.org/10.1111/j.1600-0870.2006.00178.x
Banks, R. F., & Baldasano, J. M. (2016). Impact of WRF model PBL schemes on air quality simulations over Catalonia, Spain. Sci Total Environ, 572, 98-113. https://doi.org/10.1016/j.scitotenv.2016.07.167
Belmonte Rivas, M., & Stoffelen, A. (2019). Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Science, 15(3), 831-852. https://doi.org/10.5194/os-15-831-2019
Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420–436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.
Chen, X., Zhao, K., Sun, J., Zhou, B., & Lee, W.-C. (2016). Assimilating surface observations
39
in a four-dimensional variational Doppler radar data assimilation system to improve the analysis and forecast of a squall line case. Advances in Atmospheric Sciences, 33(10), 1106-1119. https://doi.org/10.1007/s00376-016-5290-0
Cheng, F.-Y., Chin, S.-C., & Liu, T.-H. (2012). The role of boundary layer schemes in meteorological and air quality simulations of the Taiwan area. Atmospheric Environment, 54, 714-727. https://doi.org/10.1016/j.atmosenv.2012.01.029
Cheng, F.-Y., Feng, C.-Y., Yang, Z.-M., Hsu, C.-H., Chan, K.-W., Lee, C.-Y., & Chang, S.-C. (2021). Evaluation of real-time PM2.5 forecasts with the WRF-CMAQ modeling system and weather-pattern-dependent bias-adjusted PM2.5 forecasts in Taiwan. Atmospheric Environment, 244. https://doi.org/10.1016/j.atmosenv.2020.117909
Chou, M. D., Lee, K. T., Tsay, S. C., & Fu, Q. (1999). Parameterization for cloud longwave scattering for use in atmospheric models. In (Vol. 12, pp. 159-169).
Chung, Y. S., & Kim, H. S. (2008). Observations of massive air-pollution transport and associated air quality in the Yellow Sea region. Air Quality, Atmosphere & Health, 1(2), 69-79. https://doi.org/10.1007/s11869-008-0014-y
Cohen, A. E., Cavallo, S. M., Coniglio, M. C., & Brooks, H. E. (2015). A Review of Planetary Boundary Layer Parameterization Schemes and Their Sensitivity in Simulating Southeastern U.S. Cold Season Severe Weather Environments. Weather and Forecasting, 30(3), 591-612. https://doi.org/10.1175/waf-d-14-00105.1
Degelia, S. K., Wang, X., & Stensrud, D. J. (2019). An Evaluation of the Impact of Assimilating AERI Retrievals, Kinematic Profilers, Rawinsondes, and Surface Observations on a Forecast of a Nocturnal Convection Initiation Event during the PECAN Field Campaign. Monthly Weather Review, 147(8), 2739-2764. https://doi.org/10.1175/MWR-D-18-0423.1
Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background
40
and analysis-error statistics in observation space. Q. J. R. Meteorol. Soc., 131, 3385–3396, https://doi.org/10.1256/qj.05.108.
Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, https://doi.org/10.1029/94jc00572.
Fang, S.-H., & Chen, H.-W. (1996). Air quality and pollution control in Taiwan. Atmospheric Environment, 30(5), 735-741. https://doi.org/https://doi.org/10.1016/1352-2310(94)00214-2
Finn, T. S., Geppert, G., & Ament, F. (2020). Towards assimilation of wind profile observations in the atmospheric boundary layer with a sub-kilometre-scale ensemble data assimilation system. Tellus A: Dynamic Meteorology and Oceanography, 72(1), 1-14. https://doi.org/10.1080/16000870.2020.1764307
Geer, A. J., & Bauer, P. (2011). Observation errors in all-sky data assimilation. Quarterly Journal of the Royal Meteorological Society, 137(661), 2024-2037. https://doi.org/10.1002/qj.830
Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K., Wang, X., 2012. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. (GMD) 5, 1471–1492.
Ha, S., Liu, Z., Sun, W., Lee, Y., & Chang, L. (2020). Improving air quality forecasting with the assimilation of GOCI aerosol optical depth (AOD) retrievals during the KORUS-AQ period. Atmospheric Chemistry and Physics, 20(10), 6015-6036. https://doi.org/10.5194/acp-20-6015-2020
Hacker, J. P., & Chris, S. (2005). Ensemble Kalman Filter Assimilation of Fixed Screen-Height Observations in a Parameterized PBL. Monthly Weather Review, 133(11),
41
3260-3275. https://doi.org/https://doi.org/10.1175/MWR3022.1
Hong, S. Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an explicittreatment of entrainment processes. Mon. Weather Rev, 134, 2318-2341. https://doi.org/ https://doi.org/10.1175/MWR3199.1.
Hsu, C.-H., & Cheng, F.-Y. (2019). Synoptic Weather Patterns and Associated Air Pollution in Taiwan. Aerosol and Air Quality Research, 19(5), 1139-1151. https://doi.org/10.4209/aaqr.2018.09.0348
Hu, F., Nielsen-Gammon, J., & Zhang, F. (2010). Evaluation of Three Planetary Boundary Layer Schemes in the WRF Model. Journal of Applied Meteorology and Climatology - J APPL METEOROL CLIMATOL, 49. https://doi.org/10.1175/2010JAMC2432.1
Huang, G., Chen, L. J., Hwang, W. H., Tzeng, S., & Huang, H. C. (2018). Real-time PM2.5 mapping and anomaly detection from AirBoxes in Taiwan. Environmetrics, 29(8). https://doi.org/10.1002/env.2537
Hunt, B. R., E. J. Kostelich, and I. Szunyogh, (2007): Efficient data assimilation for spatiote-
mporal chaos: A local ensemble transform Kalman filter. Phys. D Nonlinear Phenom., 230, 112–126, https://doi.org/10.1016/j.physd.2006.11.008.
Janjić, T., and Coauthors, (2018): On the representation error in data assimilation. Q. J. R. Meteorol. Soc., 144, 1257–1278, https://doi.org/10.1002/qj.3130.
Kang, J.-S., Kalnay, E., Liu, J., Fung, I., Miyoshi, T., & Ide, K. (2011). “Variable localization” in an ensemble Kalman filter: Application to the carbon cycle data assimilation. Journal of Geophysical Research, 116(D9). https://doi.org/10.1029/2010jd014673
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D.G., Carmichael, G.R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., Zheng, B., 2017. MIX: a mosaic Asian anthropogenic emission inventory
42
under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 17, 935–963.
Lindskog, M., Salonen, K., Järvinen, H., & Michelson, D. B. (2004). Doppler radar wind data assimilation with HIRLAM 3DVAR. Mon. Wea. Rev., 132, 1081-1092. https://doi.org/ https://doi.org/10.1175/1520-0493(2004)132<1081:DRWDAW>2.0.CO;2.
Mahajan, S., Chen, L. J., & Tsai, T. C. (2018). Short-Term PM2.5 Forecasting Using Exponential Smoothing Method: A Comparative Analysis. Sensors (Basel), 18(10). https://doi.org/10.3390/s18103223
Minamide, M., & Zhang, F. (2017). Adaptive Observation Error Inflation for Assimilating All-Sky Satellite Radiance. Monthly Weather Review, 145(3), 1063-1081. https://doi.org/10.1175/mwr-d-16-0257.1
Miyoshi;, T., Yamane;, S., & Enomoto, T. (2007). Localizing the Error Covariance by Physical Distances
within a Local Ensemble Transform Kalman Filter (LETKF). Sola, 3, 89-92. https://doi.org/https://doi.org/10.2151/sola.2007-023
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14), 16663-16682. https://doi.org/10.1029/97jd00237
Montmerle, T., & Faccani, C. (2009). Mesoscale assimilation of radial velocities from Doppler radars in a preoperational framework. Mon. Wea. Rev., 137, 1939-1953. https://doi.org/https://doi.org/10.1175/2008MWR2725.1.
Nielsen-Gammon, J. W., and Coauthors (2008): Multisensor estimation of mixing heights over a coastal city. J. Appl. Meteor.Climatol., 47, 27–43.
Ott E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corrazza, E. Kalnay, D. J.
43
Patil, and J. A. Yorke, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415–428.
Parsons, D. B., Wang, X., & Chipilski, H. G. (2020). Impact of Assimilating PECAN Profilers on the Prediction of Bore-Driven Nocturnal Convection: A Multiscale Forecast Evaluation for the 6 July 2015 Case Study. Monthly Weather Review, 148(3), 1147-1175. https://doi.org/10.1175/mwr-d-19-0171.1
Patil, D. J., Hunt, B. R., Kalnay, E., Yorke, J. A., & Ott, E. (2001). Local Low Dimensionality of Atmospheric Dynamics. Physical Review Letters, 86(26), 5878-5881. https://doi.org/10.1103/PhysRevLett.86.5878
Pleim, J. E. (2007). A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. Journal of Applied Meteorology and Climatology, 46(9), 1383-1395. https://doi.org/10.1175/jam2539.1
Pu, Z., Zhang, H., & Anderson, J. (2013). Ensemble Kalman filter assimilation of near-surface observations over complex terrain: comparison with 3DVAR for short-range forecasts. Tellus A: Dynamic Meteorology and Oceanography, 65(1). https://doi.org/10.3402/tellusa.v65i0.19620
Serafin, S., Adler, B., Cuxart, J., De Wekker, S., Gohm, A., Grisogono, B., Kalthoff, N., Kirshbaum, D., Rotach, M., Schmidli, J., Stiperski, I., Večenaj, Ž., & Zardi, D. (2018). Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain. Atmosphere, 9(3). https://doi.org/10.3390/atmos9030102
Stull, R. B. (1988). An Introduction to Boundary Layer Meteorology. Kluwer Academic, 13, 666.
Stull, R. B. (1991). Static Stability—An Update. Bulletin of the American Meteorological Society, 72(10), 1521-1530. https://doi.org/https://doi.org/10.1175/1520-0477(1991)072<1521:SSU>2.0.CO;2
44
Tangborn, A., Demoz, B., Carroll, B. J., Santanello, J., & Anderson, J. L. (2021). Assimilation of lidar planetary boundary layer height observations. Atmospheric Measurement Techniques, 14(2), 1099-1110. https://doi.org/10.5194/amt-14-1099-2021
Tao, W.-K., Shie, C.-L., J.Simpson, S.Braun, Johnson, R. H., & Ciesielski, P. E. (2003). Convective Systems over the South China Sea: Cloud-Resolving Model Simulations. Journal of the Atmospheric Sciences, 60, 2929-2956. https://doi.org/https://doi.org/10.1175/1520-0469(2003)060<2929:CSOTSC>2.0.CO;2.
Terasaki, K., & Miyoshi, T. (2022). A 1024-Member NICAM-LETKF Experiment for the July 2020 Heavy Rainfall Event. Sola, 18A(Special_Edition), 8-14. https://doi.org/10.2151/sola.18A-002
Tewari, M., Chen, F., Wang, W., Dudhia, J., Lemone, M. A., Mitchell, K. E., Ek, M., Gayno, G., Wegiel, J. W., & Cuenca, R. (2004). Implementation and verification of the unified Noah land-surface model in the WRF model [presentation]. In 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction. American Meteorological Society: Seattle, WA, US.
Tsai, I. C., Lee, C. Y., Lung, S. C., & Su, C. W. (2021). Characterization of the vehicle emissions in the Greater Taipei Area through vision-based traffic analysis system and its impacts on urban air quality. Sci Total Environ, 782, 146571. https://doi.org/10.1016/j.scitotenv.2021.146571
Wang, X., Degelia, S. K., & Stensrud, D. J. (2019). An Evaluation of the Impact of Assimilating AERI Retrievals, Kinematic Profilers, Rawinsondes, and Surface Observations on a Forecast of a Nocturnal Convection Initiation Event during the PECAN Field Campaign. Monthly Weather Review, 147(8), 2739-2764.
45
https://doi.org/10.1175/mwr-d-18-0423.1
Wick, G. A., Dunion, J. P., Black, P. G., Walker, J. R., Torn, R. D., Kren, A. C., Aksoy, A., Christophersen, H., Cucurull, L., Dahl, B., English, J. M., Friedman, K., Peevey, T. R., Sellwood, K., Sippel, J. A., Tallapragada, V., Taylor, J., Wang, H., Hood, R. E., & Hall, P. (2020). NOAA’s Sensing Hazards with Operational Unmanned Technology (SHOUT) Experiment Observations and Forecast Impacts. Bulletin of the American Meteorological Society, 101(7), E968-E987. https://doi.org/10.1175/bams-d-18-0257.1
Wu, C.-H., Tsai, I. C., Tsai, P.-C., & Tung, Y.-S. (2019). Large–scale seasonal control of air quality in Taiwan. Atmospheric Environment, 214. https://doi.org/10.1016/j.atmosenv.2019.116868
Xing, J., Zheng, S., Ding, D., Kelly, J. T., Wang, S., Li, S., Qin, T., Ma, M., Dong, Z., Jang, C., Zhu, Y., Zheng, H., Ren, L., Liu, T. Y., & Hao, J. (2020). Deep Learning for Prediction of the Air Quality Response to Emission Changes. Environ Sci Technol, 54(14), 8589-8600. https://doi.org/10.1021/acs.est.0c02923
Xing, Y. F., Xu, Y. H., Shi, M. H., & Lian, Y. X. (2016). The impact of PM2.5 on the human respiratory system. J Thorac Dis, 8(1), E69-74. https://doi.org/10.3978/j.issn.2072-1439.2016.01.19
Yang, S.-C., Cheng, F.-Y., Wang, L.-J., Wang, S.-H., & Hsu, C.-H. (2022). Impact of lidar data assimilation on planetary boundary layer wind and PM2.5 prediction in Taiwan. Atmospheric Environment, 277. https://doi.org/10.1016/j.atmosenv.2022.119064
Zhang, F., Weng, Y., Sippel, J. A., Meng, Z., & Bishop, C. H. (2009). Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 2105-2125. https://doi.org/https://doi.org/10.1175/2009MWR2645.1.
46
周彥誠. (2021). 臺灣背風渦旋特性分析及其對空氣污染物傳輸過程影響 國立中央大學]. 桃園縣. https://hdl.handle.net/11296/68785g
林佳瑩. (2017). 台灣中部山區局部環流結構特性與其對空氣汙染物傳送過程的影響 國立中央大學]. 桃園縣. https://hdl.handle.net/11296/y5p3z5
陳誼. (2021). 整合無人機與光達觀測解析斗六地區空污事件之演變過程 國立中央大學]. 桃園縣. https://hdl.handle.net/11296/fan5v7
指導教授 楊舒芝(Shu-Chih Yang) 審核日期 2022-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明