博碩士論文 109322022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:18.117.7.6
姓名 鄧兆廷(Chao-Ting Deng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 三維剛性與可變形多面體之流固耦合運動分析
(Motion Analysis of 3D Rigid and Deformable Polyhedrons Interacted with Fluid)
相關論文
★ 貼片補強構件之層間應力分析★ 軌道不整檢測及識別方法
★ 混凝土結構分析之三維等效單軸組成材料模型★ 卵形顆粒法向與切向接觸之等效線性彈簧值之推導與驗證
★ 以四面體離散化多面體系統之接觸分析與模擬★ 軌道車輛三維動態脫軌係數之在線量測理論
★ 向量式DKMT厚殼元推導與模擬★ 向量式預力混凝土二維剛架元之數值模擬與驗證
★ 向量式有限元應用於懸索橋非線性動力分析★ 蛋形顆粒群之流固耦合分析
★ 複合版梁元素分析模型之橋梁動態識別法★ 三維等效單軸應變與應力之材料組成模型
★ 人行吊橋的現有內力評估及動力分析★ 薄殼結構非線性運動之向量式有限元分析法
★ 雷射掃描技術於鋼軌磨耗之檢測★ 動態加載下的等效單軸應變與 應力材料組成模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-12-31以後開放)
摘要(中) 三維流固耦合行為是生活中處處可見的現象,小如浮球於水中的載浮載沉、風扇運轉推動空氣而造成的風場變化,大則受風力影響的摩天大樓搖擺或者橋梁振動、河川於急流下的沖刷行為,甚至如浮台式風力發電機同時受風和水作用,造成扇葉轉動與浮台浮動的多相流體與固體耦合現象,隨著市面上各式相關的分析軟體,與計算力學在此領域日漸成熟的發展,提供了工程師們許多工具可以處理流固耦合的複雜物理問題。
本研究以柔性體的流固耦合分析模式為基礎,開發另一剛性多面體的流固耦合程序,可依照使用者需求選擇剛體或可變形體的模組做模擬與分析,流體程式使用的是美國Los Alamos National Laborary所開發的軟體Truchas,求解三維不可壓縮流體之Navier-Stokes方程,以流體體積法(Volume of Fluid, VOF)追蹤各相流體運動行為,再利用移動固體法(Moving Solid Algorithm, MSA)計算固體移動後與各流體之互制行為。
固體部分將結構物離散成四面體元素組成,可使用向量式有限元素法(Vector Form Intrinsic Finite Element, VFIFE)進行柔性體的運動求解,以節點為參考計算受力的位移,並以逆向運動扣除元素的剛體運動求解變形及運動,剛性體程序則是以離散元素法(Discrete Element Method, DEM)來進行運動求解,以各離散四面體的慣性矩、慣性積,使用平行軸定理組合成整個結構體的慣性張量,找出主軸、主慣性矩後以塊體的質心做為參考點,分析受流體作用的合力與合力矩下之剛體運動分析。此一雙向的流固耦合分析程序,可模擬分析多相流體與固體的耦合行為,且程式碼為開放式的特性,完全可以依照需求來增加其分析模組,並可廣泛應用於工程上的流固耦合問題。
摘要(英) The three-dimensional fluid-solid coupling behavior is a very common phenomenon in our life. It is as small as the floating and sinking of a floating ball in the water, and the wind field changes caused by the fan running to push the air, or as big as the swaying of skyscrapers or the vibration of bridges that are affected by wind, and the scouring behavior of rivers under the rapids, even if the floating wind turbine is affected by wind and water at the same time, the multiphase fluid and solid coupling phenomenon caused by the rotation of the fan blade and the floating of the floating platform, with various related analysis software on the market, and the maturing development of computational mechanics in this field, provides engineers with many tools to deal with the complex physics problem of fluid-structure interaction.
Based on the original fluid-structure coupling program of the flexible body, this paper develops another fluid-structure coupling program for a rigid body. According to the user′s needs, a rigid or a deformable body module can be selected for simulation and analysis. The fluid program uses Truchas which developed by Los Alamos National Laborary, solves the Navier-Stokes equations of three-dimensional incompressible fluids, uses the Volume of Fluid (VOF) method to track the fluid motion behavior of each phase, and then uses the Moving Solid Algorithm (MSA) method to calculate the interaction between the solid and each fluid after moving.
The solid is composed of discrete structures into tetrahedral elements, and the motion of the flexible body is solved using the Vector Form Intrinsic Finite Element (VFIFE) method. Deduct the rigid body motion of the elements to solves the deformation, and the rigid body program uses the Discrete Element Method (DEM) to solve the motion, using the inertia moment and inertia product of each discrete tetrahedron, the parallel axis theorem is used to accumulate and combine the inertia tensor of the entire structure, after find out the main axis and the main moment of inertia, then taken as the reference point of the mass center of the block to analyze the rigid body motion, which under the resultant force and resultant moment acted by the fluid. This two-way fluid-solid coupling analysis program can simulate and analyze the coupling behavior of multiphase fluids and solids, because the code is open-ended, so its analysis modules can be added according to requirements, and it can be widely used in engineering fluids-solid coupling problem.
關鍵字(中) ★ 流固耦合
★ 多相流體
★ 多面體
★ 向量式有限元素法
★ 離散元素法
關鍵字(英) ★ fluid-structure interaction
★ multiphase fluid
★ polyhedron
★ vector form intrinsic finite element method
★ discrete element method
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xii
第一章、 緒論 1
1-1 研究動機與目的 1
1-2 研究方法的特色 2
1-3 論文架構 3
第二章、 文獻回顧 4
2-1 流固耦合 4
2-2 向量式有限元素法 7
2-3 時間積分法 8
2-4 離散元素法 9
2-5 浮台式離岸風機 10
第三章、 流固耦合介面程序 12
3-1 流體計算力學理論 12
3-1-1 控制方程式 12
3-1-2 流體體積法(Volume of Fluid) 14
3-1-3 有限體積法(Finite Volume Method) 16
3-1-4 改良投影法(分步法) 18
3-1-5 大渦流LES模式 20
3-1-6 有效沉浸邊界法(Effective Immersed Boundary Method, EIBM) 21
3-2 諧和流固時間步長 22
3-3 固體表面之合力計算 24
3-4 固體體積分率計算 29
3-5 固體速度影響流場 31
3-6 流固耦合架構 32
3-7 固體表面壓力驗證 35
第四章、 三維固體 向量式有限元素法理論 38
4-1 四節點四面體元 38
4-2 四面體元的位移和變形 39
4-2-1 逆向運動 42
4-3 四面體元之內力計算 43
4-3-1 變形座標 44
4-3-2 節點內力計算 49
4-4 四面體元之外力計算 54
4-5 時間積分法 59
4-5-1 中央差分法(Central Difference Method, CDM) 59
4-5-2 完全顯式時間積分法(Completely Explicit Method, CEM) 62
4-6 使用CEM的結果探討 65
4-6-1 精確度比較 66
4-6-2 放大時間步長大小 68
4-6-3 小結 70
第五章、 離散元素法 72
5-1 控制方程式 72
5-2 時間積分法 74
5-3 剛性塊體運動分析 75
5-3-1 求解主軸方向和主慣性矩 75
5-3-2 剛體平移和旋轉 80
5-4 剛性固體程序驗證 86
5-4-1 塊體基本性質計算驗證 86
5-4-2 剛體運動計算驗證 91
第六章、 流固耦合數值算例 99
6-1 剛性體流固耦合算例 99
6-1-1 圓柱體上下浮動 99
6-1-2 圓柱體左右擺動 106
6-1-3 扇葉與流場的互制行為 109
6-2 柔性體流固耦合算例 121
6-2-1 柔性浮塊變形模擬 121
第七章、 結論與建議 126
7-1 結論 126
7-2 建議 128
參考文獻 129
附錄一 初始勁度k0推導 134
附錄二 空心圓柱質量慣性矩計算 139
附錄三 圓柱體上下低速浮動行為解析公式 144
附錄四 體積模數(Bulk modulus)推導 147
附錄五 水流與鋼纜的互制動力行為分析 149
參考文獻 [1] 黃致榮,「三維多相流體與柔性固體耦合互制分析」,博士論文,國立中央大學土木工程研究所,2013。
[2] O’Brien, J. F., Zordan, V. B., and Hodgins, J. K., “Combining active and passive simulations for secondary motion”, IEEE Computer Graphics and Applications 20, 4, pp. 86-96, 2000.
[3] Peskin, C. S., “Flow pattern around heart valves : a numerical method”, Journal of computational physics, 10(2), pp. 252-271, 1972.
[4] Peskin, C. S., “The immersed boundary method”, Acta numerica, 11, pp. 479-517, 2002.
[5] Sookkyung LIM, C. S. Peskin, “Simulations of the Whirling Instability by the Immersed Boundary Method”, SIAM J. SCI. Comput. Vol. 25, No. 6, pp. 2066-2083, 2004.
[6] Shen Linwei, Eng-Soon Chan, “Numerical simulation of fluid-structure interaction using a combined volume of fluid and immersed boundary method”, Ocean Engineering, 35, pp. 939-952, 2008.
[7] Hirt, C. W.. & Nichols, B. D., “Volume of fluid (VOF) method for the dynamics of free boundaries.”, Journal of computational physics, 39(1), pp. 201-225, 1981.
[8] Youngs, D. L.. ”Time-dependent multi-material flow with large fluid distortion.”, Numerical methods for fluid dynamics, 24(2), 273-285, 1982.
[9] Hirt C.W., A.A. Amsden, J.L. Cook, “An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds”, Journal of Computational Physics, 14, pp.227-253, 1974.
[10] Souli M., A. Ouahsine, L. Lewin, “ALE formulation for fluid-structure interaction problem”, Comput. Methods Appl. Mesh. Engrg., 190, pp. 659-675, 2000.
[11] Nomura Takashi, Thomas J.R. Hughes, “An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body”, Computer Methods in Applied Mechanics and Engineering, 95, 115-138, 1992.
[12] Monaghan, J. J., “Smoothed particle hydrodynamics.”, Annual Review of Astronomy and Astrophysics 30, 1, 543-574, 1992.
[13] Gingold, R., Monaghan, J., “Smoothed particle hydrodynamics: Theory and application to non-spherical stars.” Mon. Not. R. Astron. Soc., 181, pp. 375-389, 1977.
[14] Lucy, L. B., “A numerical approach to the testing of the fission hypothesis.”, Astronomical Journal., 82, pp. 1013-1024, 1977.
[15] Monaghan J. J., “Smoothed Particle Hydrodynamics and its diverse applications”, Annu. Rev. Fluid Mech, 44, 323-346, 2012.
[16] Muller, M., Charypar, D., Gross, M.., “Particle-based fuid simulation for interactive applications.”, In Proceedings of the 2003 ACM SIGGRAPH/ Eurographics Symposium on Computer Animation, SCA ‘03, Eurographics Association, pp. 154-159, 2003.
[17] Antoci Carla, Mario Gallati, Stefano Sibilla, “Numerical simularion of fluid-structure interaction by SPH”, Computers and structure, Vol 85, pp. 879-890, 2007.
[18] Amini Y., H. Emdad, M. Farid, “A new model to solve fluid–hypo-elastic solid interaction using the smoothed particle hydrodynamics (SPH) method”, European Journal of Mechanics Mechanics B/Fluids, 30, 184-194, 2011.
[19] Zhang G. M., R. C. Batra, “Modified smoothed particle hydrodynamics method and its application to transient problems”, Computational Mechanics, 34, 137-146, 2004.
[20] Gilmanov Anvar, Trung Bao Le, Fotis Sotiropoulos, “A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains”, Journal of Computational Physics, 300, 814-843, 2015.
[21] Young Y. L., “Fluid–structure interaction analysis of flexible composite marine propellers”, Journal of Fluid and Structures, 24 ,799-818, 2008.
[22] Rafiee Ashkan, Krish P. Thiagarajan, “An SPH projection method for simulating fluid-hypoelastic structure interaction”, Comput. Methods Appl. Mech. Engrg., 198, 2785-2795, 2009.
[23] Tallec P. Le, J. Mouro, “Fluid structure interaction with large structural displacements”, Comput. Methods Appl. Mesh. Engrg., 190, pp. 3039-3067, 2001.
[24] Tian Fang-Bao, Hu Dai, Haoxiang Luo, James F. Doyle, Bernard, “Fluid-structure interaction involving large deformations : 3D simulations and applications to biological systems”, Journal of Computarional Physics, 258, pp. 451-469, 2014.
[25] Toma Milan, Rosalyn Chan-Akeley, Jonathan Arias, Gregory D. Kurgansky, Wenbin Mao, “Fluid-Structure Interaction Analyses of Biological Systems Using Smoothed-Particle Hydrodynamics”, Biology, 10, pp. 185, 2021.
[26] 莊美惠,「雙向流固耦合移動邊界法發展及其於山崩海嘯之研究」,碩士論文,國立中央大學水文與海洋科學研究所,2009。
[27] Wu Tso-Ren, Chia-Ren Chu, Chih-Jung Huang, Chung-Yue Wang, Ssu-Ying Chien, Meng-Zhi Chen, “A two-way coupled simulation of moving solids in free-surface flows”, Computers & Fluids, 100, pp. 347-355, 2014.
[28] 周超,「蛋形顆粒群之流固耦合分析」,碩士論文,國立中央大學土木工程研究所,2016。
[29] Ting, E. C., Shih, C. and Wang, Y. K., “Fundamentals of a vector form intrinsic finite element: Part I. basic procedure and a plane frame element.”, J. Mech., 20(2), pp. 113-122, 2004.
[30] Ting, E. C., Shih, C. and Wang, Y. K., “Fundamentals of a vector form intrinsic finite element: Part II. plane solid elements”, J. Mech., 20(2), pp. 123-132, 2004.
[31] Shih, C., Wang, Y. K. and Ting, E. C., “Fundamentals of a vector form intrinsic finite element: Part III. Convected material frame and examples”, J. Mech., 20(2), pp. 133-143 ,2004.
[32] Wang, R. Z., Tsai, K. C., Lin, B. Z., “Extremely large displacement dynamic analysis of elastic-plastic plane frames.”, Earthquake Engineering & Structural Dynamics, 40, 1515-1533, 2011.
[33] Wang, C. Y., Wang, R. Z.., Chuang, C. C., and Wu, T. Y., “Nonlinear Analysis of Reticulated Space Truss Structures.”, Journal of Mechanics, Vol. 22, No. 3, pp. 235-248, 2006.
[34] Wu, T. Y., Wang, C. Y., Chuang C. C., Ting. E. C., “Motion analysis of 3D membrane structures by a vector form intrinsic finite element.”, Journal of the Chinese Institute of Engineers , 30, 961-76, 2007.
[35] Wu, T. Y., Ting, E. C., “Large deflection analysis of 3D membrane structures by a 4-node quadrilateral intrinsic element.”, Thin-Walled Structures, 46, 261-75, 2008.
[36] Wu, T. Y., Wu, J. H., Ho, J. M., Chuang, C. C., Wang, R. Z., and Wang, C. Y., “A Study on Motion Analysis of 3D Solids by a Vector Form Intrinsic Finite Element.”, Journal Chinese Institute of Civil and Hydraulic Engineering, Vol. 19, No.1, pp. 79-89, 2007.
[37] 李東奇,「向量式有限元時間積分法之研究」,碩士論文,中原大學土木工程學系,2018。
[38] Chang Shuenn-Yih, “Improved numerical dissipation for explicit methods In pseudodynamic tests”, Earthquake Engng, Struc. Dyn., 26, pp. 917-929, 1997.
[39] Chang Shuenn-Yih, “Explicit pseudodynamic algorithm with unconditional stability”, J. Eng. Mech., ASCE 128(9), pp. 935-947, 2002.
[40] Chang Shuenn-Yih, “Improved explicit method for structure dynamics”, J. Eng. Mech., ASCE 133(7), pp. 748-760, 2007.
[41] Chang Shuenn-Yih, “Comparisons of Structure-Dependent Explicit Method for Time Integration”, International Journal of Structural Stability and Dynamics”, Vol. 15, pp.20, 2015.
[42] Cundall, P.A.. and Strack, O.D., “A Discrete Numerical Model for Granular Assemblies”, Geotechnique, Vol. 29, No. 1, pp. 47-65, 1979.
[43] 許秀真,「多面塊體系統之運動模擬」,碩士論文,國立中央大學土木工程研究所,2001。
[44] 林昇鴻,「卵形顆粒介質運動之數值模擬」,碩士論文,國立中央大學土木工程研究所,2006。
[45] 林鴻,「以四面體離散化多面體系統之接觸分析與模擬」,碩士論文,國立中央大學土木工程研究所,2015。
[46] 鄭湍銘,「三維離散多面塊體系統動力接觸分析之物件導向程式開發」,碩士論文,國立中央大學土木工程研究所,2022。
[47] Yan J., A. Korobenko, X. Deng, Y. Bazilevs, “Computational free-surface fluid-structure interaction with application to floating offshore wind turbines”, Computers and Fluids, 141, pp. 155-174, 2016.
[48] 李仲凱 & 郭真祥,「耦合BEM與CFD方法計算浮體式風機於規則波中運動之研究」,中國造船暨輪機工程學刊,第三十四卷第二期,pp. 85-98, 2015。
[49] 徐兆力 & 林宇銜,「浮動式離岸風力發電機動態響應與模組化設計之研究」,第37屆海洋工程研討會論文集,國立中興大學,2015。
[50] Petrone Crescenzo, Nicholas D. Oliveto, Mettupalayam V. Sivaselvan, “Dynamic Analysis of Mooring Cable with Application to Floating Offshore Wind Turbine”, Journal of Engineering Mechanics, Volume 142 Issue 3, 2016
[51] Liu, P.L.-F., Wu, T. R., Raichlen, F., Synolakis, C., and Borrero, J., “Runup and rundown from three-dimensional sliding masses”, Journal of Fluid Mechanics, 536, 107-144,2005.
[52] Li, Q. Y., Zheng, J. R., Liao, G., Jin, Y., “Approach on Area Coordinate, Volume Coordinate and Their Application in True 3DGIS.", Journal of Earth Science and Engineering.”, vol 1,pp. 53-60, 2011.
[53] 莊清鏘,陳璽予,吳俊霖,「運動阻尼於向量式有限元素法靜力分析之研究」,先進工程學刊,第十三卷,第二期,pp. 49-55, 2018。
[54] 王勉力,莊清鏘,李志中,「應用運動阻尼於向量式有限元素法之靜力模擬」,中華民國力學學會第四十二屆全國力學會議,2018。
[55] 林佳宏,「混和型剛性顆粒系統之數值模擬」,碩士論文,國立中央大學土木工程研究所,2006。
[56] 陳思翰,「柔性結構非接觸變形量測與風壓反算」,碩士論文,國立中央大學土木工程研究所,2013。
[57] 朱佳仁,「工程流體力學」,科技圖書出版,台北(2005)。
指導教授 王仲宇 審核日期 2022-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明