參考文獻 |
簡芳菁、柳懿秦、周仲島、林沛練、洪景山、蕭玲鳳,2005:2003年梅雨季MM5系集降水預報
李志昕、洪景山,2014:區域系集預報系統研究:系集成員產生方式之評估
蘇凱翊,2016:使用群集分析分類綜觀尺度天氣型態以探討台灣北部地區午後熱對流系統局部環流結構與系統發展特性,碩士論文,國立中央大學大氣物理研究所
施筱柔,2019:2017年6月2-3日梅雨鋒面個案分析,碩士論文,國立中央大學大氣物理研究所
鄭羽廷,2019:同化雷達觀測與反演變數改善模式對流尺度降雨預報能力:探討OSSE與真實個案,碩士論文,國立中央大學大氣物理研究所
陳奕安,2019:多都卜勒氣象雷達反演之垂直速度的剖風儀驗證及高解析度三維風場反演能力的測試,碩士論文,國立中央大學大氣物理研究所
蔡博安,2020:評估TAHOPE觀測實驗同化S-PolKa徑向風、回波與折射指數對短期降雨預報的影響:觀測系統模擬實驗(OSSE)之測試,碩士論文,國立中央大學大氣物理研究所
莊秉學,2021:使用局地系集轉換卡爾曼濾波器同化雙偏極化參數的全新方法:夏季真實個案中的分析場與預報場,碩士論文,國立中央大學大氣物理研究所
蘇奕叡、賴曉薇等,2021:WEPS降雨情境預報於梅雨預報應用之發展
Chen, C.-H., Chung, K.-S., Yang, S.-C., & Chen, L.-H. (2021). Sensitivity of Forecast Uncertainty to Different Microphysics Schemes within a Convection-Allowing Ensemble during SoWMEX-IOP8. Monthly Weather Review, 149(12), 4145-4166. https://doi.org/10.1175/mwr-d-20-0366.1
Chen, G. T.-J., Wang, C.-C., & Lin, D. D.-W. (2005). Characteristics of Low-Level Jets over Northern Taiwan in Mei-Yu Season and Their Relationship to Heavy Rain Events. Monthly Weather Review, 133, 20-43. https://doi.org/10.1175/MWR-2813.1.
Chen, G. T.-J., & Yu, C.-C. (1988). Study of Low-Level Jet and Extremely Heavy Rainfall over Northern Taiwan in the Mei-Yu Season. Monthly Weather Review, 116, 884-891. https://doi.org/10.1175/1520-0493(1988)116<0884:SOLLJA>2.0.CO;2
Chen, Y.-L., Chu, Y.-J., Chen, C.-S., Tu, C.-C., Teng, J.-H., & Lin, P.-L. (2018). Analysis and Simulations of a Heavy Rainfall Event over Northern Taiwan during 11–12 June 2012. Monthly Weather Review, 146(9), 2697-2715. https://doi.org/10.1175/mwr-d-18-0001.1
Chen, Y.-L., & Li, J. (1995). Characteristics of Surface Airflow and Pressure Patterns over the Island of Taiwan during TAMEX. Monthly Weather Review, 123, 695-716.
Chen, Y.-L., Tu, C.-C., Hsiao, F., Chen, C.-S., Lin, P.-L., & Lin, P.-H. (2022). An Overview of Low-Level Jets (LLJs) and Their Roles in Heavy Rainfall over the Taiwan Area during the Early Summer Rainy Season. Meteorology, 1(1), 64-112. https://doi.org/10.3390/meteorology1010006
Chung, K.-S., Chiu, H.-J., Liu, C.-Y., & Lin, M.-Y. (2020). Satellite Observation for Evaluating Cloud Properties of the Microphysical Schemes in Weather Research and Forecasting Simulation: A Case Study of the Mei-Yu Front Precipitation System. Remote Sensing, 12(18). https://doi.org/10.3390/rs12183060
Du, Y., & Chen, G. (2018). Heavy Rainfall Associated with Double Low-Level Jets over Southern China. Part I: Ensemble-Based Analysis. Monthly Weather Review, 146(11), 3827-3844. https://doi.org/10.1175/mwr-d-18-0101.1
Dudhia, J. (1989). Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. Journal of the Atmospheric Sciences, 46(20), 3077–3107. https://doi.org/https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
Hong, S.-Y., Kim, J.-H., Kim, J.-o., & Dudhia, J. (2006). The WRF single moment microphysics scheme (WSM). Journal of the Korean Meteorological Society, 42, 129-151.
Ke, C.-Y., Chung, K.-S., Chen Wang, T.-C., & Liou, Y.-C. (2019). Analysis of heavy rainfall and barrier-jet evolution during Mei-Yu season using multiple Doppler radar retrievals: a case study on 11 June 2012. Tellus A: Dynamic Meteorology and Oceanography, 71(1). https://doi.org/10.1080/16000870.2019.1571369
Kohone. (2001). Self-Organizing Maps.
Kuo, Y.-H., & Chen, G. T.-J. (1990). The Taiwan Area Mesoscale Experiment(TAMEX): An Overview. Bulletin of the American Meteorological Society, 71(4), 488-503. https://doi.org/10.1175/1520-0477(1990)071<0488:TTAMEA>2.0.CO;2
Lang, S. E., Tao, W.-K., Chern, J.-D., Wu, D., & Li, X. (2014). Benefits of a Fourth Ice Class in the Simulated Radar Reflectivities of Convective Systems Using a Bulk Microphysics Scheme. Journal of the Atmospheric Sciences, 71(10), 3583-3612. https://doi.org/10.1175/jas-d-13-0330.1
Li, J., & Chen, Y.-L. (1998). Barrier Jets during TAMEX. Monthly Weather Review, 126, 959-971. https://doi.org/10.1175/1520-0493(1998)126<0959:BJDT>2.0.CO;2
Li, J., Chen, Y.-L., & Lee, W.-C. (1997). Analysis of a Heavy Rainfall Event during TAMEX. Monthly Weather Review, 125, 1060-1082. https://doi.org/10.1175/1520-0493(1997)125<1060:AOAHRE>2.0.CO;2
Lin, Y.-F., Wu, C.-C., Yen, T.-H., Huang, Y.-H., & Lien, G.-Y. (2020). Typhoon Fanapi (2010) and its Interaction with Taiwan Terrain – Evaluation of the Uncertainty in Track, Intensity and Rainfall Simulations. Journal of the Meteorological Society of Japan. Ser. II, 98(1), 93-113. https://doi.org/10.2151/jmsj.2020-006
Liou, Y.-C., Chang, S.-F., & Sun, J. (2012). An Application of the Immersed Boundary Method for Recovering the Three-Dimensional Wind Fields over Complex Terrain Using Multiple-Doppler Radar Data. Monthly Weather Review, 140(5), 1603-1619. https://doi.org/10.1175/mwr-d-11-00151.1
Liou, Y.-C., & Chang, Y.-J. (2009). A Variational Multiple–Doppler Radar Three-Dimensional Wind Synthesis Method and Its Impacts on Thermodynamic Retrieval. Monthly Weather Review, 137(11), 3992-4010. https://doi.org/10.1175/2009mwr2980.1
Liou, Y.-C., Chiou, J.-L., Chen, W.-H., & Yu, H.-Y. (2014). Improving the Model Convective Storm Quantitative Precipitation Nowcasting by Assimilating State Variables Retrieved from Multiple-Doppler Radar Observations. Monthly Weather Review, 142(11), 4017-4035. https://doi.org/10.1175/mwr-d-13-00315.1
Liou, Y.-C., Yang, P.-C., & Wang, W.-Y. (2019). Thermodynamic Recovery of the Pressure and Temperature Fields over Complex Terrain Using Wind Fields Derived by Multiple-Doppler Radar Synthesis. Monthly Weather Review, 147(10), 3843-3857. https://doi.org/10.1175/mwr-d-19-0059.1
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14), 16663-16682. https://doi.org/10.1029/97jd00237
Raut, B. A., de la Fuente, L., Seed, A. W., Jakob, C., & Reeder, M. J. (2012). Application of a Space-Time Stochastic Model for Downscaling Future Rainfall Projections. Sydney, Australia: Engineers Australia, 579-586.
Tao, W.-K., Simpson, J., Baker, D., Braun, S., Chou, M., Ferrier, B., Johnson, D. E., Khain, A., Lynn, B., Shie, C., Starr, D., Sui, C., Wang, Y., & Wetzel, P. (2003). Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteorology and Atmospheric Physics, 82, 97-137. https://doi.org/10.1007/s00703-001-0594-7
Tao, W.-K., Simpson, J., & McCumber, M. (1989). An Ice-Water Saturation Adjustment.
Tao, W. K., Wu, D., Lang, S., Chern, J. D., Peters-Lidard, C., Fridlind, A., & Matsui, T. (2016, Feb 16). High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. J Geophys Res Atmos, 121(3), 1278-1305. https://doi.org/10.1002/2015JD023986
Teng, H.-F., Lee, C.-S., Hsu, H.-H., Done, J. M., & Holland, G. J. (2019). Tropical Cloud Cluster Environments and Their Importance for Tropical Cyclone Formation. Journal of Climate, 32(13), 4069-4088. https://doi.org/10.1175/jcli-d-18-0679.1
Tu, C.-C., Chen, Y.-L., Chen, C.-S., Lin, P.-L., & Lin, P.-H. (2014). A Comparison of Two Heavy Rainfall Events during the Terrain-Influenced Monsoon Rainfall Experiment (TiMREX) 2008. Monthly Weather Review, 142(7), 2436-2463. https://doi.org/10.1175/mwr-d-13-00293.1
Tu, C.-C., Chen, Y.-L., Chen, S.-Y., Kuo, Y.-H., & Lin, P.-L. (2017). Impacts of Including Rain-Evaporative Cooling in the Initial Conditions on the Prediction of a Coastal Heavy Rainfall Event during TiMREX. Monthly Weather Review, 145(1), 253-277. https://doi.org/10.1175/mwr-d-16-0224.1
Tu, C.-C., Chen, Y.-L., Lin, P.-L., & Huang, M.-Q. (2022). Analysis and Simulations of a Heavy Rainfall Event Associated with the Passage of a Shallow Front over Northern Taiwan on 2 June 2017. Monthly Weather Review, 150(3), 505-528. https://doi.org/10.1175/MWR-D-21-0113.1
Turgu, E., & Kömüşcü, A. Ü. (2019). Using K-Means Methodology for Reclassifying Rainfall Regions of Turkey.
Wang, C.-C., Chiou, B.-K., Chen, G. T.-J., Kuo, H.-C., & Liu, C.-H. (2016). A numerical study of back-building process in a quasistationary rainband with extreme rainfall over northern Taiwan during 11–12 June 2012. Atmospheric Chemistry and Physics, 16(18), 12359-12382. https://doi.org/10.5194/acp-16-12359-2016
Wang, C.-C., Li, M.-S., Chang, C.-S., Chuang, P.-Y., Chen, S.-H., & Tsuboki, K. (2021). Ensemble-based sensitivity analysis and predictability of an extreme rainfall event over northern Taiwan in the Mei-yu season: The 2 June 2017 case. Atmospheric Research, 259. https://doi.org/10.1016/j.atmosres.2021.105684
Yeh, H.-C., & Chen, Y.-L. (2003). Numerical Simulations of the Barrier Jet over Northwestern Taiwan during the Mei-Yu Season. Monthly Weather Review, 131, 1396-1407. https://doi.org/10.1175/1520-0493(2003)131<1396:NSOTBJ>2.0.CO;2
Zhang, Q., Du, Y., Chen, Y.-l., Zhao, Y., & Wang, X. (2014). Numerical Simulations of Spatial Distributions and Diurnal Variations of Low-Level Jets in China during Early Summer. Journal of Climate, 27(15), 5747-5767. https://doi.org/10.1175/jcli-d-13-00571.1 |