博碩士論文 107382605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:3.133.135.8
姓名 任國亮(GUO-LIANG REN)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 高放處置場環境下低密度緩衝材料潛變行為研究
(Study on Creep Behavior of Low Density Buffer Materials in High-level Radioactive Waste Disposal Environment)
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 針對用過核子燃料之最終處置場建置,國際間目前一致採用『深層地質處置』的方式,以人工障壁與天然障壁相結合,使之與人類生活環境完全隔離。在處置設施封閉後數百年乃至十萬年的複雜環境中,緩衝材料之潛變將影響人工障壁的長期穩定性。由於施工建造、吸水膨脹以及沖蝕等原因,緩衝材料局部範圍內密度可能降低。因此,本研究採用美國懷俄明州MX80膨潤土為實驗材料,運用壓製方式製作試體,量測低密度膨潤土之回脹壓力、水力傳導係數,隨後進行等速率直剪與等應力直剪實驗以求取潛變參數,從而完善低密度情形下緩衝材料之潛變模型。同時引入有限元素法,並進行數值模擬來探討低密度緩衝材料長期之潛變行為,為最終處置場設計提供參考。
實驗研究結果顯示:在較低的乾密度情形下,緩衝材料性能有所降低。隨著乾密度的減小,最大回脹壓力呈指數型衰減,而水力傳導係數呈現指數型增長,且未飽和試體以及飽和試體之抗剪強度均折減較多。因此在處置孔長期安全考量下,需要限制緩衝材料密度降低的幅度。另一方面,在預膨脹模式下,緩衝材料的性能較之定體積模式有明顯差異。在預膨脹模式下,由於膨潤土經歷的發展變化不同,其回脹壓力之時程曲線呈現三段式的特點,有别於定體積回脹之雙峰曲線,且預膨脹模式下最大回脹壓力衰減更為明顯。水力傳導係數的量測結果顯示,在預膨脹模式下水力傳導係數增長趨勢亦更為明顯,阻水能力愈發弱化。同時,預膨脹模式下,膨潤土試體之抗剪強度亦出現較大幅度的折減,且局部低密度的區域將會較早產生潛變,並持續產生潛變之行為,這一現象在處置孔長期安全評估中應特別關注。
數值模擬分析發現:透過潛變參數建立潛變模型預估潛變之長期行為,潛變位移與飽和歷程相關,在不同點位趨勢相似但細節有所差異。緩衝材料在前50年飽和歷程發展較快,隨後減緩,在第100年左右達到完全飽和。而在緩衝材料與上方回填材料交界處,其垂直位移不斷增大,並在第十萬年達到最大值。低密度與常密度1600 kg/m³之緩衝材料在飽和歷程方面較為類似,最終變形亦差異較小,僅在最大垂直位移數值上略低。
摘要(英) For the construction of a repository for spent nuclear fuel, the deep geological disposal method is currently accepted internationally. The multi-barrier design is used by combining engineered barriers and natural barriers for isolation of the wastes from the human living environment. In the complex environment of hundreds or even 100,000 years after the closure of the disposal facility, the creep characteristics of the buffer material will significantly affect the long-term stability of the engineered barrier. During the process of saturation, due to construction, expansion and erosion, reduced density of buffer may occur in local area. In this study, MX80 bentonite from Wyoming, USA was used as the test material, and buffer material was made by static loading. Through measurement of hydro-mechanical parameters including swelling pressure and hydraulic conductivity, and shear experiments including direct shear test and constant-stress shear test, the creep parameters were finally obtained and can be used in the creep model of the buffer material at varying densities. In addition, numerical simulation was used to explore the long-term creep behavior of buffer in a deposition hole by the finite element method.
The experimental results show that the performance of the buffer material is degraded at low dry densities. With the decrease of dry density, the maximum swelling pressure decreases exponentially while the hydraulic conductivity increases exponentially, and the shear strength of both unsaturated and saturated specimens decreases significantly. Thus, it is necessary to limit the magnitude of the reduction in the density in the long-term consideration. Meanwhile, in the pre-swell mode the performance of buffer is found to be different from that in the constant volume mode. In the former, due to the swelling process experienced by the bentonite, the time-history curve presents a three-stage characteristic, which is different from the bimodal curve exhibited in the later mode. The measurement of hydraulic conductivity shows that the increasing trend is also more obvious for the pre-swelled specimens, indicating reduced water resistance. Moreover, the shear strength in the pre-swell mode is greatly reduced. The creep in the low-density area will take place earlier and continue to develop progressively, which should draw special attention in the long-term safety assessment for the disposal.
The numerical simulation results show that the creep behavior of the deposition hole can be predicted using the creep parameters obtained and the creep model established. The displacement is related to the saturation history with similar trends but different details for different parts. The saturation process will develop rapidly in the first 50 years, then slow down and reach full saturation at around 100 years. At the interface of the buffer material and the backfill material, the vertical displacement increases continuously and reaches its maximum value at the 100,000th year. The saturation time history of the low-density buffer material is very similar to that of the constant density buffer of 1600 kg/m³, with slightly smaller maximum vertical displacement at the interface of buffer and backfill.
關鍵字(中) ★ 緩衝材料
★ MX80
★ 潛變
★ 數值模擬
關鍵字(英) ★ buffer material
★ MX80
★ creep
★ numerical simulation
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1.1研究背景 1
1.2研究目的與範圍 2
1.3研究內容與流程 4
第二章 文獻回顧 7
2.1 用過核子燃料最終處置場設計概念 7
2.2 用過核子燃料之緩衝材料性質 11
2.2.1緩衝材料概念與功能 11
2.2.2緩衝材料基本性質 12
2.2.3緩衝材料之選擇 14
2.2.4緩衝材料之低密度成因探討 18
2.3 材料之潛變行為的理論研究 27
2.3.1潛變之基本概念 27
2.3.2緩衝材料之潛變行為概述 28
2.3.3潛變模型之參數化研究 29
2.3.4潛變模型相關的數值模擬研究 38
2.4緩衝材料之潛變行為的實驗研究 44
2.4.1 土壤力學之剪切實驗研究 44
2.4.2 土壤力學潛變參數相關實驗進展 46
2.5緩衝材料水力耦合參數分析與量測之實驗研究 53
2.5.1參數要求概述 53
2.5.2回脹壓力相關實驗進展 54
2.5.3水力傳導相關實驗進展 64
第三章 研究方法與實驗設計 67
3.1試驗材料 67
3.2試驗儀器與相關模具 69
3.2.1 回脹實驗相關試驗儀器 69
3.2.2 水力傳導量測系統 76
3.2.3 等速率直剪試驗 78
3.2.4 等應力直剪試驗 82
第四章 試驗結果與分析 86
4.1 回脹實驗結果與分析 86
4.2 水力傳導實驗結果與分析 96
4.3 等速率直剪實驗結果與分析 101
4.4 等應力直剪實驗結果與分析 112
第五章 低密度緩衝材料潛變行為的數值模擬研究 133
5.1 研究概述 133
5.2 模型建立與網格劃分 134
5.3 參數設定 136
5.4 初始條件與邊界設定 140
5.5 分析步與時間增量設定 143
5.6 結果分析 145
5.6.1 飽和時程分析 145
5.6.2 潛變變形之時程分析 149
第六章 結論與建議 156
6.1 結論 156
6.2 建議 158
參考文獻 159
參考文獻 王欣婷,(2003),「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究」,碩士論文,國立中央大學土木工程學系,中壢。
台灣電力公司,(2017),「我國用過核子燃料最終處置技術可行性評估報告」,臺北。(TPC-SNFD2017-V1)
任春平,(2008),「低放射性廢棄物最終處置功能安全評估模式審查技術之建立」,行政院原子能委員會放射性物料管理局委託研究計畫研究報告,No. 97FCMA006,臺北。
李冠宏,(2016),「最終處置場近場環境對緩衝材料回脹壓力之影響」,碩士論文,國立中央大學土木工程學系,中壢。
林庭輝、邱俊翔,(2020) ,「土壤潛變行為之數值模擬」,第 18 屆大地工程學術研究討論會論文集(Geotech2020) ,屏東,第1-7頁。
陳文泉,(2004),「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,博士論文,國立中央大學土木工程學系,中壢。
黃偉慶,(2004),「放射性廢棄物最終處置場本土緩衝材料設計參數之研究」,行政院原子能委員會放射性物料管理局委託研究計畫研究報告,No. 932004FCMA006,臺北 。
張瑞宏、黃偉慶、黃敬哲、洪祥銘、萬明憲,(2017) ,「用過核燃料深地層處置場近場之熱-水-力學耦合效應分析」,中國土木水利工程學刊,第二十九卷,第二期,第63-73頁。
張道盛,(2019),「用過核子燃料最終處置場之母岩破裂帶影響效應分析及現地實驗數值模擬」,碩士論文,國立中央大學土木工程學系,中壢。
周薪凱,(2021),「低放射性最終處置場混合型緩衝材料之工程特性及潛變試驗與模擬」,碩士論文,國立中央大學土木工程學系,中壢。
郭俊廷、詹璧銘、詹穎雯,(2021) ,「膨潤土在酸性環境之緩衝回填材料性能影響」,台灣混凝土學會2021年會混凝土工程研討會論文集,高雄。
鄭百宏,(2014),「緩以膨潤土製作緩衝回填材料之性能評估」,碩士論文,國立台灣大學土木工程學系,臺北。
賴彥丞,(2020),「低放射性廢棄物最終處置場緩衝材料之潛變試驗及變形分析」,碩士論文,國立中央大學土木工程學系,中壢。
日本原子能研究開發機構(JAEA),(2008),「緩衝材の浸食現象評価-ベントナイトコロイドの生成挙動」,茨城県,日本。(JAEA-Research 2008-097)
日本原子力発電環境整備機構(NUMO),(2011) ,「地層処分低レベル放射性廃棄物に関わる処分の技術と安全性-処分場の説明資料」,東京,日本。(NUMO-TR-10-03)
前田宗宏,棚井憲治,伊藤勝,三原守弘,田中益弘,(1998) ,「カルシウム型ベントナイトの基本特性——膨潤圧、透水係數、一軸圧縮強度及び彈性係數」,日本核燃料サイクル開発機構研究報告,茨城県,日本。(JNC TN8410 98-021)
鈴木英明,藤田朝雄,(1999) ,「緩衝材の技術膨潤特性」,日本核燃料サイクル開発機構研究報告,茨城県,日本。(JNC TN8400 99-038)
Ali, S. D. and Kim, J.M., (2017). “A numerical simulation of thermo-mechanical behavior of the intact rock in response to the Borehole Heater Test.” Annals of Nuclear Energy, Vol. 101, No. 45, pp. 301-311.
Alonso, U., Missana, T., Gutiérrez, M.G., Morejón, J., Mingarro, M. and Fernández, A. M. (2019). “Bentonite expansion, sedimentation and erosion in artificial fractures.” SKB Technical Report TR-19-08, Stockholm, Sweden, 15-38.
Arintha Indah Dwi Syafiarti, (2019). Experimental and Numerical Analysis on Creep of Buffer Material in Nuclear Waste Deposition Hole [D], National Central University, Zhongli.
Åkesson, M., Kristensson, O., Börgesson, L. and Dueck, A. (2010). “THM modelling of buffer, backfill and other system components-Critical processes and scenarios.” SKB Report (TR-10-11), Stockholm, Sweden, 12-68.
Bernachy-Barbe, F., Gatabin, C., Imbert, C., Guillot, W., Talandier, J. (2017). “Swelling properties of MX-80 bentonite materials for Andra’s repository engineered barriers.” Beacon Initial Workshop, Jun 2017, Kaunas, Lithuania.
Bi, G., Briaud, J. L., Sanchez, M., and Kharanaghi M.M. (2019). “Power law model to predict creep movement and creep failure,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 145, No. 9, pp. 04019044-1-10.
Birgersson, M., Börgesson, L., Hedström, M., Karnland, O. and Nilsson, U. (2009). “Bentonite erosion Final report.” SKB Technical Report TR-09-34, Stockholm, Sweden, 11-56.
Börgesson, L. and Pusch, R. (1987). “Rheological Properties of a Calcium Smectite.” SKB Technical Report TR-87-31, Stockholm, Sweden, 1-63.
Dakshanamurthy, V. (1978). “A new method to predict swelling of expansive clayey soils.” Geotechnical Engineering, 9, 29-38.
D.C.S Simulia. (2016). ABAQUS/CAE. Dassault Systems. Providence, RI, USA.
Hoff, N.J. (1954). “Approximate analysis of structures in the presence of moderately large creep deformations.” Quart.Appl.Math.12, pp.49-55.
Huang, W.H., and Chen, W.C. (2004). “Swelling behavior of a buffer material under simulated near field environment.” Journal of Nuclear Science and Technology, 41(12), 1271-1279.
Huertas, F., Fariña, P., Farias, J., García-Siñériz, J.L., Villar, M.V., Fernández, A.M., Martín, P.L., Elorza, F.J., Gens, A., Sánchez, M., Lloret, A., Samper, J. and Martínez, M.A. (2006). “Full-scale Engineered Barriers Experiment Updated Final Report (1994-2004).” Publicación Técnica ENRESA (05-0/2006). Madrid, Spain, 1-53.
IAEA. (2013). “Characterization of Swelling Clays as Components of the Engineered Barrier System for Geological Repositories.” IAEA-TECDOC-1718, International Atomic Energy Agency, Vienna, Austria, 1-78.
Japan Nuclear Cycle Development Institute. (2000). “H12: Project to establish the scientific and technical basis for HLW disposal in Japan Supporting Report 2: Repository design and engineering technology.” Japan Nuclear Cycle Development Institute Report JNC TN 1400 2000-003, Tokai-mura, Japan, 1-48.
Juvankoski, M., Ikonen, K., and Jalonen, T. (2012). “Buffer production line 2012: Design, production and initial state of the buffer”. Posiva Report (2012-17), Eurajoki, Finland, 1-88.
Kang, C.H., Kim, J.W., Chun, K.S., Park, J.H., Choi, J.W., Lee, J.O., Lee, Y.M., Kim, S.S., Hwang, Y.S. (2002). “High Level Radwaste Disposal Technology Development, Geological Disposal System Development.” KAERI Report (RR-2336/2002), Korea Atomic Energy Research Institute, Daejon, Korean, 1-36.
Karnland, O. and Birgersson, M. (2006). “Montmorillonite stability with special respect to KBS-3 conditions.” SKB Technical Report TR-06-11, Stockholm, Sweden, 1-39.
Kiviranta, L. and Kumpulainen, S. (2011). “Quality control and characterisation of bentonite materials.” Posiva Oy Working Report (2011-84), Eurajoki. Finland, 5-45.
Laaksoharju, M. (1999).“Groundwater characterisation and modelling: problems, facts and possibilities.”SKB Technical Report TR-99-42, Stockholm, Sweden, 13-42.
Lacasse, S. and Berre, T. (2005). “Undrained creep susceptibility of clays.” Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, 531–536.
Ladanyi, B. and Arteau, J. (1978). “Effect of specimen shape on creep response of a frozen sand.” Eng. Geol., 13: 207–222.
Lanyon, G.W. and Gaus, I. (2016). “Main outcomes and review of the FEBEX In Situ Test (GTS) and Mock-up after 15 years of operation.” NAGRA Technical Report NTB 15-04, Wettingen, Switzerland, 5-123.
Liu, J. and Neretnieks, I. (2006). “Physical and chemical stability of the bentonite buffer.” SKB Report R-06-103, Stockholm, Sweden, 2-38.
Madsen, F. T. and Mu ̈ller-Vonmoos, M. (1989). “The swelling behavior of clay.” Applied Clay Science, 4, 143-156.
Mitchell, J.K. (1976). Fundamentals of Soil Behavior, 1st edition, Wiley, New York.
Pusch, R. (1983). “Stress/strain/time properties of highly compacted bentonite.” SKB Technical Report TR-83-47, Stockholm, Sweden, 37-46.
Pusch, R., Börgesson, L., and Erlström, M. (1987). “Alteration of isolating properties of dense smectite clay in repository environment as exemplified by seven pre-quarternary clays.” SKB Technical Report TR-87-29, Stockholm, Sweden, 15-38.
Pusch, R. (1999). “Is montmorillonite-rich clay of MX-80 type the ideal buffer for isolation of HLW.” SKB Technical Report TR-99-33, Stockholm, Sweden, 5-53.
Pusch, R. and Adey, R. (1999). “Creep in buffer clay.” SKB Technical Report TR-99-32, Stockholm, Sweden, 1-54.
Pusch, R. (2001). “The buffer and backfill handbook part 2: materials and techniques.” SKB Technical Report TR-02-12, Stockholm, Sweden, 113-181.
Reid, C., Lunn, R., Mountassir, G.E., and Tarantino, A. (2015). “A mechanism for bentonite buffer erosion in a fracture with a naturally varying aperture.” Mineralogical Magazine, the Mineralogical Society of Great Britain & Ireland, Vol. 79(6), pp. 1485–1494.
Rutqvist, J. and Tsang, C.F. (2008). “Review of SKB’s Work on Coupled THM Processes within SR-Can.” SKI Report, Stockholm, Sweden, 11-87.
Sane, P., Laurila, T., Olin, M. and Koskinen, K. (2012). “Current Status of Mechanical Erosion Studies of Bentonite Buffer.” Posiva Report (2012-45), Eurajoki, Finland, 1-47.
Singh, A. and Mitchell, J.K. (1969). “Creep potential and creep rupture of soils.” Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, Mexico, 379–384.
SKB. (2006). “Buffer and backfill process report for the safety assessment SR-Can.” SKB Technical Report TR-06-18, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden, 113-158.
SKB. (2010), “Repository production report, SKB 2010. Design and production of the KBS-3 repository.” SKB Technical Report TR-10-12, Stockholm, Sweden, 1-61.
SKB. (2010). “Design, production and initial state of the buffer.” SKB Technical Report TR-10-15, Stockholm, Sweden, 2-80.
SKB. (2011b). “Long-term safety for the final repository for spent nuclear fuel at Forsmark.” SKB Technical Report TR-11-01, Stockholm, Sweden, 10-29.
Su, W., Wang, Q., Ye, W., Deng, Y., Chen, Y. (2021). “Swelling pressure of compacted MX80 bentonite/sand mixture prepared by different methods.” Soils and Foundations,Volume 61, Issue 4, 1142-1150.
TACIS. (1996). “Site Selection for Radioactive Waste Disposal in Ukraine.” Final Report on Project U 4.02/93, Cassiopeia.
Toprak, E., Mokni, N., and Olivella, S. (2012). “Thermo-Hydro-Mechanical Modelling of Buffer.” POSIVA Synthesis Report (2012-47), Eurajoki, Finland, 1-41.
Turner, S. (1966). “The foundations of possible engineering design methods for plastics.” Trans. J.Plastics Inst., 34, 127-135.
VIALov, S.S. (1959). “Rheological properties and bearing capacity of frozen soils.” Transl. 74, U.S.Army CRREL, Hanover, Germany, 1-11.
Vilks, P., and Miller, N.H. (2010). “Laboratory Bentonite Erosion Experiments in a Synthetic and a Natural Fracture.” Nuclear Waste Management Organization, NWMO TR-2010-16, Toronto, Canada, 1-73.
Villar, M. (2005). “MX-80 Bentonite. Thermo-Hydro-Mechanical Characterisation Performed at CIEMAT in the Context of the Prototype Project.” CIEMAT Technical Report. Departamento de Impacto Ambiental de la Energía, Madird, Spain.1-43.
Wang, Q., Tang, A.M., Cui, Y.J., Delage, P. and Gatmiri, B. (2012). “Experimental study on the swelling behaviour of bentonite/claystone mixture”. Engineering Geology, 2012, Vol.124, pp. 59-66.
Wang Z. C. and Wong R. C. K. (2016). “Strain-dependent and stress-dependent creep model for a till subject to triaxial compression.” International Journal of Geomechanics, Vol. 16, No. 3, pp. 04015084-1-11.
Ye, W., Lai, X., Wang, Q., Chen, Y., Chen, B. and Cui, Y. (2014). “An experimental investigation on the secondary compression of unsaturated GMZ01 bentonite.” Applied Clay Science, 97, 104-109.
Yong, R. N., Boonsinsuk, P. and Yiotis, D. (1985). “Creep Behaviour of a buffer material for nuclear fuel waste vault.” Canadian Geotechnical Journal, 22, 541-551.
Zhu, C.M., Ye, W.M., Chen, Y.G., Chen, B., and Cui, Y.J. (2013). “Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite.” Engineering Geology, 166, 74-80.
指導教授 黃偉慶(Wei-Hsing Huang) 審核日期 2022-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明