參考文獻 |
王欣婷,(2003),「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究」,碩士論文,國立中央大學土木工程學系,中壢。
台灣電力公司,(2017),「我國用過核子燃料最終處置技術可行性評估報告」,臺北。(TPC-SNFD2017-V1)
任春平,(2008),「低放射性廢棄物最終處置功能安全評估模式審查技術之建立」,行政院原子能委員會放射性物料管理局委託研究計畫研究報告,No. 97FCMA006,臺北。
李冠宏,(2016),「最終處置場近場環境對緩衝材料回脹壓力之影響」,碩士論文,國立中央大學土木工程學系,中壢。
林庭輝、邱俊翔,(2020) ,「土壤潛變行為之數值模擬」,第 18 屆大地工程學術研究討論會論文集(Geotech2020) ,屏東,第1-7頁。
陳文泉,(2004),「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,博士論文,國立中央大學土木工程學系,中壢。
黃偉慶,(2004),「放射性廢棄物最終處置場本土緩衝材料設計參數之研究」,行政院原子能委員會放射性物料管理局委託研究計畫研究報告,No. 932004FCMA006,臺北 。
張瑞宏、黃偉慶、黃敬哲、洪祥銘、萬明憲,(2017) ,「用過核燃料深地層處置場近場之熱-水-力學耦合效應分析」,中國土木水利工程學刊,第二十九卷,第二期,第63-73頁。
張道盛,(2019),「用過核子燃料最終處置場之母岩破裂帶影響效應分析及現地實驗數值模擬」,碩士論文,國立中央大學土木工程學系,中壢。
周薪凱,(2021),「低放射性最終處置場混合型緩衝材料之工程特性及潛變試驗與模擬」,碩士論文,國立中央大學土木工程學系,中壢。
郭俊廷、詹璧銘、詹穎雯,(2021) ,「膨潤土在酸性環境之緩衝回填材料性能影響」,台灣混凝土學會2021年會混凝土工程研討會論文集,高雄。
鄭百宏,(2014),「緩以膨潤土製作緩衝回填材料之性能評估」,碩士論文,國立台灣大學土木工程學系,臺北。
賴彥丞,(2020),「低放射性廢棄物最終處置場緩衝材料之潛變試驗及變形分析」,碩士論文,國立中央大學土木工程學系,中壢。
日本原子能研究開發機構(JAEA),(2008),「緩衝材の浸食現象評価-ベントナイトコロイドの生成挙動」,茨城県,日本。(JAEA-Research 2008-097)
日本原子力発電環境整備機構(NUMO),(2011) ,「地層処分低レベル放射性廃棄物に関わる処分の技術と安全性-処分場の説明資料」,東京,日本。(NUMO-TR-10-03)
前田宗宏,棚井憲治,伊藤勝,三原守弘,田中益弘,(1998) ,「カルシウム型ベントナイトの基本特性——膨潤圧、透水係數、一軸圧縮強度及び彈性係數」,日本核燃料サイクル開発機構研究報告,茨城県,日本。(JNC TN8410 98-021)
鈴木英明,藤田朝雄,(1999) ,「緩衝材の技術膨潤特性」,日本核燃料サイクル開発機構研究報告,茨城県,日本。(JNC TN8400 99-038)
Ali, S. D. and Kim, J.M., (2017). “A numerical simulation of thermo-mechanical behavior of the intact rock in response to the Borehole Heater Test.” Annals of Nuclear Energy, Vol. 101, No. 45, pp. 301-311.
Alonso, U., Missana, T., Gutiérrez, M.G., Morejón, J., Mingarro, M. and Fernández, A. M. (2019). “Bentonite expansion, sedimentation and erosion in artificial fractures.” SKB Technical Report TR-19-08, Stockholm, Sweden, 15-38.
Arintha Indah Dwi Syafiarti, (2019). Experimental and Numerical Analysis on Creep of Buffer Material in Nuclear Waste Deposition Hole [D], National Central University, Zhongli.
Åkesson, M., Kristensson, O., Börgesson, L. and Dueck, A. (2010). “THM modelling of buffer, backfill and other system components-Critical processes and scenarios.” SKB Report (TR-10-11), Stockholm, Sweden, 12-68.
Bernachy-Barbe, F., Gatabin, C., Imbert, C., Guillot, W., Talandier, J. (2017). “Swelling properties of MX-80 bentonite materials for Andra’s repository engineered barriers.” Beacon Initial Workshop, Jun 2017, Kaunas, Lithuania.
Bi, G., Briaud, J. L., Sanchez, M., and Kharanaghi M.M. (2019). “Power law model to predict creep movement and creep failure,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 145, No. 9, pp. 04019044-1-10.
Birgersson, M., Börgesson, L., Hedström, M., Karnland, O. and Nilsson, U. (2009). “Bentonite erosion Final report.” SKB Technical Report TR-09-34, Stockholm, Sweden, 11-56.
Börgesson, L. and Pusch, R. (1987). “Rheological Properties of a Calcium Smectite.” SKB Technical Report TR-87-31, Stockholm, Sweden, 1-63.
Dakshanamurthy, V. (1978). “A new method to predict swelling of expansive clayey soils.” Geotechnical Engineering, 9, 29-38.
D.C.S Simulia. (2016). ABAQUS/CAE. Dassault Systems. Providence, RI, USA.
Hoff, N.J. (1954). “Approximate analysis of structures in the presence of moderately large creep deformations.” Quart.Appl.Math.12, pp.49-55.
Huang, W.H., and Chen, W.C. (2004). “Swelling behavior of a buffer material under simulated near field environment.” Journal of Nuclear Science and Technology, 41(12), 1271-1279.
Huertas, F., Fariña, P., Farias, J., García-Siñériz, J.L., Villar, M.V., Fernández, A.M., Martín, P.L., Elorza, F.J., Gens, A., Sánchez, M., Lloret, A., Samper, J. and Martínez, M.A. (2006). “Full-scale Engineered Barriers Experiment Updated Final Report (1994-2004).” Publicación Técnica ENRESA (05-0/2006). Madrid, Spain, 1-53.
IAEA. (2013). “Characterization of Swelling Clays as Components of the Engineered Barrier System for Geological Repositories.” IAEA-TECDOC-1718, International Atomic Energy Agency, Vienna, Austria, 1-78.
Japan Nuclear Cycle Development Institute. (2000). “H12: Project to establish the scientific and technical basis for HLW disposal in Japan Supporting Report 2: Repository design and engineering technology.” Japan Nuclear Cycle Development Institute Report JNC TN 1400 2000-003, Tokai-mura, Japan, 1-48.
Juvankoski, M., Ikonen, K., and Jalonen, T. (2012). “Buffer production line 2012: Design, production and initial state of the buffer”. Posiva Report (2012-17), Eurajoki, Finland, 1-88.
Kang, C.H., Kim, J.W., Chun, K.S., Park, J.H., Choi, J.W., Lee, J.O., Lee, Y.M., Kim, S.S., Hwang, Y.S. (2002). “High Level Radwaste Disposal Technology Development, Geological Disposal System Development.” KAERI Report (RR-2336/2002), Korea Atomic Energy Research Institute, Daejon, Korean, 1-36.
Karnland, O. and Birgersson, M. (2006). “Montmorillonite stability with special respect to KBS-3 conditions.” SKB Technical Report TR-06-11, Stockholm, Sweden, 1-39.
Kiviranta, L. and Kumpulainen, S. (2011). “Quality control and characterisation of bentonite materials.” Posiva Oy Working Report (2011-84), Eurajoki. Finland, 5-45.
Laaksoharju, M. (1999).“Groundwater characterisation and modelling: problems, facts and possibilities.”SKB Technical Report TR-99-42, Stockholm, Sweden, 13-42.
Lacasse, S. and Berre, T. (2005). “Undrained creep susceptibility of clays.” Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, 531–536.
Ladanyi, B. and Arteau, J. (1978). “Effect of specimen shape on creep response of a frozen sand.” Eng. Geol., 13: 207–222.
Lanyon, G.W. and Gaus, I. (2016). “Main outcomes and review of the FEBEX In Situ Test (GTS) and Mock-up after 15 years of operation.” NAGRA Technical Report NTB 15-04, Wettingen, Switzerland, 5-123.
Liu, J. and Neretnieks, I. (2006). “Physical and chemical stability of the bentonite buffer.” SKB Report R-06-103, Stockholm, Sweden, 2-38.
Madsen, F. T. and Mu ̈ller-Vonmoos, M. (1989). “The swelling behavior of clay.” Applied Clay Science, 4, 143-156.
Mitchell, J.K. (1976). Fundamentals of Soil Behavior, 1st edition, Wiley, New York.
Pusch, R. (1983). “Stress/strain/time properties of highly compacted bentonite.” SKB Technical Report TR-83-47, Stockholm, Sweden, 37-46.
Pusch, R., Börgesson, L., and Erlström, M. (1987). “Alteration of isolating properties of dense smectite clay in repository environment as exemplified by seven pre-quarternary clays.” SKB Technical Report TR-87-29, Stockholm, Sweden, 15-38.
Pusch, R. (1999). “Is montmorillonite-rich clay of MX-80 type the ideal buffer for isolation of HLW.” SKB Technical Report TR-99-33, Stockholm, Sweden, 5-53.
Pusch, R. and Adey, R. (1999). “Creep in buffer clay.” SKB Technical Report TR-99-32, Stockholm, Sweden, 1-54.
Pusch, R. (2001). “The buffer and backfill handbook part 2: materials and techniques.” SKB Technical Report TR-02-12, Stockholm, Sweden, 113-181.
Reid, C., Lunn, R., Mountassir, G.E., and Tarantino, A. (2015). “A mechanism for bentonite buffer erosion in a fracture with a naturally varying aperture.” Mineralogical Magazine, the Mineralogical Society of Great Britain & Ireland, Vol. 79(6), pp. 1485–1494.
Rutqvist, J. and Tsang, C.F. (2008). “Review of SKB’s Work on Coupled THM Processes within SR-Can.” SKI Report, Stockholm, Sweden, 11-87.
Sane, P., Laurila, T., Olin, M. and Koskinen, K. (2012). “Current Status of Mechanical Erosion Studies of Bentonite Buffer.” Posiva Report (2012-45), Eurajoki, Finland, 1-47.
Singh, A. and Mitchell, J.K. (1969). “Creep potential and creep rupture of soils.” Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, Mexico, 379–384.
SKB. (2006). “Buffer and backfill process report for the safety assessment SR-Can.” SKB Technical Report TR-06-18, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden, 113-158.
SKB. (2010), “Repository production report, SKB 2010. Design and production of the KBS-3 repository.” SKB Technical Report TR-10-12, Stockholm, Sweden, 1-61.
SKB. (2010). “Design, production and initial state of the buffer.” SKB Technical Report TR-10-15, Stockholm, Sweden, 2-80.
SKB. (2011b). “Long-term safety for the final repository for spent nuclear fuel at Forsmark.” SKB Technical Report TR-11-01, Stockholm, Sweden, 10-29.
Su, W., Wang, Q., Ye, W., Deng, Y., Chen, Y. (2021). “Swelling pressure of compacted MX80 bentonite/sand mixture prepared by different methods.” Soils and Foundations,Volume 61, Issue 4, 1142-1150.
TACIS. (1996). “Site Selection for Radioactive Waste Disposal in Ukraine.” Final Report on Project U 4.02/93, Cassiopeia.
Toprak, E., Mokni, N., and Olivella, S. (2012). “Thermo-Hydro-Mechanical Modelling of Buffer.” POSIVA Synthesis Report (2012-47), Eurajoki, Finland, 1-41.
Turner, S. (1966). “The foundations of possible engineering design methods for plastics.” Trans. J.Plastics Inst., 34, 127-135.
VIALov, S.S. (1959). “Rheological properties and bearing capacity of frozen soils.” Transl. 74, U.S.Army CRREL, Hanover, Germany, 1-11.
Vilks, P., and Miller, N.H. (2010). “Laboratory Bentonite Erosion Experiments in a Synthetic and a Natural Fracture.” Nuclear Waste Management Organization, NWMO TR-2010-16, Toronto, Canada, 1-73.
Villar, M. (2005). “MX-80 Bentonite. Thermo-Hydro-Mechanical Characterisation Performed at CIEMAT in the Context of the Prototype Project.” CIEMAT Technical Report. Departamento de Impacto Ambiental de la Energía, Madird, Spain.1-43.
Wang, Q., Tang, A.M., Cui, Y.J., Delage, P. and Gatmiri, B. (2012). “Experimental study on the swelling behaviour of bentonite/claystone mixture”. Engineering Geology, 2012, Vol.124, pp. 59-66.
Wang Z. C. and Wong R. C. K. (2016). “Strain-dependent and stress-dependent creep model for a till subject to triaxial compression.” International Journal of Geomechanics, Vol. 16, No. 3, pp. 04015084-1-11.
Ye, W., Lai, X., Wang, Q., Chen, Y., Chen, B. and Cui, Y. (2014). “An experimental investigation on the secondary compression of unsaturated GMZ01 bentonite.” Applied Clay Science, 97, 104-109.
Yong, R. N., Boonsinsuk, P. and Yiotis, D. (1985). “Creep Behaviour of a buffer material for nuclear fuel waste vault.” Canadian Geotechnical Journal, 22, 541-551.
Zhu, C.M., Ye, W.M., Chen, Y.G., Chen, B., and Cui, Y.J. (2013). “Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite.” Engineering Geology, 166, 74-80. |