博碩士論文 109322033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:3.133.118.23
姓名 周辰諭(Chen-Yu Chou)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 基於多個非本地經驗關係預測土壤剪力波速(Vs)下之新方法
相關論文
★ 由地震引起的房屋倒塌率與保險費率試算:以台灣為例★ 台灣累積絕對速度(CAV)地震危害度分析
★ 利用極值理論探討最大可能地震規模:以台灣為例★ 以台灣地震開發的新地動數據庫
★ 以離心模型試驗探討凹形邊坡之穩定性★ 影響土壤液化機率之不確定性分析和主要因素:以台灣中部為例
★ 根據切片法原理建立穩定數圖表進行邊坡穩定性分析★ 評估土壤液化最佳地動強度量值
★ 考慮不同時間跨度下的台北土層液化機率★ 台灣本地土壤液化數據庫之應用
★ 以SPT-N結合Vs-N之經驗模型進行土壤液化評估★ 機率式地震危害度分析的解析解計算方法
★ 建立台灣CAVSTD-GMPE模型並應用於地震預警★ 土壤液化羅吉斯迴歸模型與台北及高雄的液化機率圖
★ 土壤液化評估法中之各參數的敏感度分析★ 五種土壤液化分析方法的假設統計分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 有鑒於剪力波速(Vs)與土壤動態反應之間有良好的相關性,以及標準貫入
試驗(Standard Penetration Test, SPT)在大地工程現地鑽探調查中被廣泛的使用,並針對所有、砂性、黏性土壤提出了SPT-N與Vs之間的多種經驗關係。有關於本研究所使用在世界各地的數據情形下,進一步說明在本文中,我們基於所有土壤20個、砂性土壤15個、黏性土壤11個對於 SPT-N和Vs之間的非臺灣本地之經驗關係,提出了臺灣南部位於高雄市中心區的最佳剪力波速估計值。

它說明了,非臺灣本地砂土經驗關係的15個估計值計算出了一個平均值,平均而言,優於每個非當地經驗模型的單個估計值,這與我們在日常生活中息息相關;這表示平均值定律有著相當之重要性。此外,基於統計學上的 Kolmogorov-Smirnov (K-S)檢定檢驗的結果表明,我們還給出了研究區域的最佳估計剪力波速(Vs)之機率分布。因此,這也說明了近年來對於在大地工程中越來越受到關注的基於可靠性上的分析至關重要。

因此,出於實際目的及回顧過往的研究可以得知建議使用基於未經修正的
SPT-N值為所有土壤、砂土、黏土開發的經驗方程。對於已經存在和新提出的經驗方程之間的差異主要是由於研究地點的特定地質條件、數據分析的數量以及SPT試驗操作習慣和地震勘測的程序有關。鑒於此,應謹慎使用這些經驗方程,並盡可能對照測得的Vs值進行檢查。
摘要(英) Owing to the good correlation between shear wave velocity (Vs) and soil dynamic responses, and the widespread use of the standard penetration test (SPT) for geotechnical site investigation, several empirical relationships between SPT-N and Vs have been proposed for sandy soil based on data all over the world. In this paper, we present the best-estimate shear wave velocity for the downtown areas of Kaohsiung City in southern Taiwan, based on 15 non-local empirical relationships between SPT-N and Vs for sandy soil.

It shows that the mean value of the 15 estimates from the non-local relationships, averagely speaking, outperforms the individual estimates from each non-local model, which is another demonstration of the power of average that is in existence and exercised in our daily life. In addition, based on the result of statistical goodness-of-fit tests, we also present the best-estimate Vs probability distribution for the study area, which is essential to the reliability-based analyses that have gained more and more attention in geotechnical engineering.

Therefore, for practical purposes and reviewing past studies, it is recommended to use empirical equations based on uncorrected SPT-N values for all soil, sand, and clay development. The differences between the existing and newly proposed empirical equations are mainly due to the specific geological conditions of the study site, the amount of data analyzed, the operating habits of SPT experiments, and the procedures of the seismic survey. For this reason, these empirical equations should be used with caution and checked against measured Vs values whenever possible.
關鍵字(中) ★ 砂土
★ 黏土
★ 剪力波速(Vs)
★ SPT
★ 平均值定律
關鍵字(英) ★ Sandy soil
★ clayey soil
★ Shear wave velocity (Vs)
★ Law of average
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 論文架構 3
第二章 文獻回顧 4
2-1 標準貫入試驗 4
2-2 剪力波速之波傳原理 6
2-2-1 剪力波速之應用 7
2-2-2 現地剪力波速量測方法 8
2-3 SPT-N與Vs相關性 11
2-4 SPT-N60與Vs相關性 18
2-5 SPT-N與Vs相關性、SPT-N60與Vs相關性之小結 24
2-6 平均值定律 25
第三章 研究方法 27
3-1 強震測站場址工程地質資料庫(TSMIP) 29
3-2 GetData Graph Digitizers 2.25 36
3-3 SPT-N與Vs數據對處理(排名) 40
3-4 SPT-N與Vs數據對處理(建立經驗式) 42
3-5 最佳估計剪力波速Vs和機率分布 44
3-5-1 最佳估計剪力波速Vs之效能評估 46
第四章 結果分析與討論 47
4-1 最佳估計與性能評估 47
4-2 建立本地經驗模型(SPT-N與Vs) 63
4-2-1 建立本地經驗模型(SPT-N1(60)與Vs) 76
4-3 討論 89
4-3-1 模型1的效果 89
4-3-2 其它地區 90
4-3-3 N1(60)和Vs 91
4-3-4 其他地區經驗式(臺北市) 92
第五章 結論與建議 93
5-1 結論 93
5-2 建議 94
參考文獻 95
參考文獻 [1].Ang, A. H-S., and Tang, W. H. (2007). Probability concepts in engineering: Emphasis on applications to civil and environmental engineering, 2nd Ed., Wiley, New York.
[2].Athanasopoulos, G.A. (1995). “Empirical correlation Vs-N SPT for soils of Greece; a comparative study of reliability.” In: Akmak, A.S.ç (Ed.), Proceeding of 7th International Conference on Soil Dynamics and Earthquake Engineering (Chania, Crete). Computational Mechanics, Southampton, 19-36.
[3].Bolt, B.A., (1978). Earthquakes: A Primer: Freeman, W.H. and Company, San Francisco.
[4].Dikmen, U. (2009). “Statistical correlations of shear wave velocity and penetration resistance for soils.” Journal of Geophysics and Engineering, 6, 61–72.
[5].Fujiwara, T. (1972). “Estimation of ground movements in actual destructive earthquakes.” Proceedings of the Fourth European Symposium on Earthquake Engineering, London, 125-132.
[6].Fumal, T.E., and Tinsley, J.C. (1985). “Mapping shear wave velocities of near-surface geological materials. In: Ziony, T.I. (Ed.), In: Predicting areal limits of earthquake-induced landsliding; In the evaluation of earthquake hazards in the Los Angeles region – An earth science perspective.” USGS Paper, 1360, 127–150.
[7].Hasançebi, N., and Ulusay, R. (2007). “Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments.” Bulletin of Engineering Geology and the Environment, 66, 203–213.
[8].Hanumantharao, C., and Ramana, G.V. (2008). “Dynamic soil properties for microzonation of Delhi, India.” Journal of Earth System Science, 117(S2), 719–730.
[9].Imai, T. (1977). “P and S wave velocities of the ground in Japan.” Proceeding of IX International Conference on Soil Mechanics and Foundation Engineering, 2, 127–132.
[10].Imai, T., Fumoto, H., and Yokota, K. (1975). “The relation of mechanical properties of soil to P- and S- wave velocities in Japan.” Proceeding of 4th Japan Earthquake Engineering Symp, 89-96.
[11].Imai, T., and Tonouchi, K. (1982). “Correlation of N-value with S-wave velocity and shear modulus.” Proceedings of the 2nd European Symposium of Penetration Testing, Amsterdam, 57-72.
[12].Imai, T., and Yoshimura, Y. (1970). “Elastic wave velocity and soil properties in soft soil.” Tsuchito-Kiso, 18(1), 17-22.
[13].Iyisan, R. (1996). “Correlations between shear wave velocity and in-situ penetration test results.” Chamber of Civil Engineers of Turkey. Teknik Dergi, 7(2), 1187-1199.
[14].Jafari, M.K., Asghari, A., and Rahmani, I. (1997). “Empirical correlation between shear wave velocity (Vs) and SPT-N value for the south of Tehran soils.” Proceedings of 4th International Conference on Civil Engineering (Tehran, Iran).
[15].Jafari, M.K., Shafiee, A., and Razmkhah, A. (2002). “Dynamic properties of fine-grained soils in the south of Tehran.” Soil Dynamic Earthquake Engineering, 4, 25-35.
[16].Jinan, Z. (1987). “Correlation between seismic wave velocity and the number of blow of SPT and depth.” Selected Papers from the Chinese Journal of Geotechnical Engineering, 2, 239-246.
[17].Kayabali, K. (1996). “Soil liquefaction evaluation using shear wave velocity.” Engineering Geology, 44(1), 121–127.
[18].Kayabaşı, A. (2015). “Some empirical equations for predicting standard penetration test blow counts in clayey soils: a case study in Mersin, Turkey.” Arabian Journal of Geosciences, 8, 7643-7654.
[19].Kiku, H., Yoshida, N., Yasuda, S., Irisawa, T., Nakazawa, H., Shimizu, Y., Ansal, A., and Erkan, A. (2001). “In-situ penetration tests and soil profiling in Adapazari, Turkey.” Proceedings of the ICSMGE/TC4 Satellite Conference on Lessons Learned From Recent Strong Earthquakes, 259-265.
[20].Lee, S.H. (1990). “Regression models of shear wave velocities.” Journal of the Chinese Institute of Engineers, 13, 519-532.
[21].Ohsaki, Y., and Iwasaki, R., (1973). “On dynamic shear moduli and Poisson′s ratio of soil deposits.” Soils and Foundations, 13(4), 61–73.
[22].Ohta, Y., Goto. N., Kagami, H., and Shiono, K. (1978). “Shear wave velocity measurement during a standard penetration test.” Earthquake Engineering and Structural Dynamics, 6, 43-50.
[23].Ohta, T., Hara, A., Niwa, M., and Sakano, T. (1972). “Elastic shear moduli as estimated from N-value.” Proc. 7th Ann. Convention of Japan Society of Soil Mechanics and Foundation Engineering, 265–268.
[24].Ohta, S., and Toriumi, I. (1970). “Dynamic response characteristics of Osaka Plain.” Proceedings of the Annual Meeting. A. I. J (in Japenese).
[25].Okamoto, T., Kokusho, T., Yoshida, Y., and Kusuonoki, K. (1989). “Comparison of surface versus subsurface wave source for P-S logging in sand layer.” Proceedings of 44th Ann. Conf. JSCE, 3, 996–997.
[26].Pitilakis, K.D., Anastasiadis, A., and Raptakis, D. (1992). “Field and laboratory determination of dynamic properties of natural soil deposits.” Proceedings of 10th World Conf. Earthquake Engineering, Rotterdam, 1275–1280.
[27].Pitilakis, K., Raptakis, D., Lontzetidis, K.T., Vassilikou, T., and Jongmans, D. (1999). “Geotechnical and geophysical description of Euro-Seistests, using field and laboratory tests, and moderate strong ground motions.” Journal of Earthquake Engineering, 3(3), 381–409.
[28].Raptakis, D.G., Anastasiadis, S.A.J., Pitilakis, K.D., and Lontzetidis, K.S. (1995). “Shear wave velocities and damping of Greek natural soils.” Proceedings of 10th European Conf. Earthquake Engineering, 1, 477–482.
[29].Seed, H.B., and Idriss, I.M. (1981). “Evaluation of liquefaction potential sand deposits based on observation of performance in previous earthquakes.” ASCE National Convention (MO), 481-544.
[30].Seed, H.B., Idriss, I.M., and Arango, I. (1983). “Evaluation of liquefaction potential using field performance data.” Journal of Geotechnical Engineering, 109(3), 458–482.
[31].Shibata, T. (1970). “Analysis of liquefaction of saturated sand during cyclic loading.” Disaster Prevention Res. Inst. Bull., 13, 563–570.
[32].Sisman, H. (1995). “An investigation on relationships between shear wave velocity and SPT and pressuremeter test results.” MSc Thesis, Ankara University, Geophysical Engineering Department, Ankara, 75.
[33].Skempton, A.W. (1986). “Standard penetration test procedures and the effect in sands of overburden pressure, relative density, particle size, aging, and over consolidation.” Geotechnique, 36(3), 425-447.
[34].Sykora, D.E., and Stokoe, K.H. (1983). “Correlations of in-situ measurements in sands of shear wave velocity.” Soil Dynamics and Earthquake Engineering, 20, 125–136.
[35].Yokota, K., Imai, T., and Konno, M. (1991). “Dynamic deformation characteristics of soils determined by laboratory tests.” OYO Tee. Rep, 3, 13.
[36].李咸亨、吳志明,「下井探測法量測剪力波速之影響因素探討」,中國土木水利工程學刊(1991),3(1),第15-28頁。
[37].王春煌、郭漢興、王如龍,「標準能量試驗打擊能量差異性探討」,地工技術雜誌(1986),16,第14-22頁。
[38].林志峯、曾俊傑、蕭秋安、周坤賢、胡志昕、王鶴翔,「多種地球物理探測法於基隆河河岸土層剪力波波速調查」,中國土木水利工程學刊(2020),47(2),第71-78頁。
[39].黃俊鴻,「土壤動力學:第7章,地震波」,國立中央大學(2015),第70頁。
指導教授 王瑞斌(Jui-Pin Wang) 審核日期 2022-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明