參考文獻 |
[1] 行政院農業委員會水土保持局 (2017),「水土保持手冊」。
[2] 詹錢登 (2000),「土石流概論」,科技圖書股份有限公司。
[3] 周憲德、楊祥霖、李璟芳、黃郅軒 (2013),「火炎山土石流之流動型態與地聲特性分析」,中華民國水土保持學報,46(2),71-78。
[4] 李明熹 (2006),「土石流發生降雨警戒分析及其應用」,國立成功 大學水利及海洋工程研究所,博士論文。
[5] 陳威宏 (2017),「土石流現地監測與流動型態分析」,國立中央大 學土木工程研究所,碩士論文。
[6] 彭楙鈞 (2019),「火炎山土石流現地監測及土石流粒徑分析」,國立中央大學土木工程研究所,碩士論文。
[7] 邱奕旭 (2020),「土石流現地監測與地聲頻譜分析」,國立中央大學土木工程研究所,碩士論文。
[8] 蔡勝棠 (2018),「火炎山土石流之降雨特性及地貌演變分析」,國立中央大學土木工程研究所,碩士論文。
[9] 羅傳鈞(2021),「火炎山土石流監測及逕流引致土石流實驗」,國立中央大學土木工程研究所,碩士論文。
[10] 土石流防災資訊網-行政院農業委員會水土保持局。取自http://246.swcb.gov.tw。
[11] Coviello, V., Theule, J. I., Marchi, L., Comiti, F., Cavalli, M. and Arattano, M. (2019), “Deciphering sediment dynamics in a debris-flow catchment: insights from instrumental monitoring and high-resolution topography”, 7th International Conference on Debris-Flow Hazards Mitigation.pp.103-110
[12] Chow, V. T. (1959), “Open-channel hydraulics”, McGraw-Hill, New York.
[13] Cui, P. (1999), “Impact of debris flow on river chanel in the upper reachesof the Yangtze River”, International Journal of Sediment Research, Vol. 14, pp. 201–203.
[14] Cui, P., Guo, X., Yan, Y., Li, Y. and Ge, Y. (2018) , “Real-time observation of an active debris flow watershed in the Wenchuan Earthquake area”, Geomorphology, Vol. 321, pp.153–166.
[15] Cui, P., Zeng, C. and Lei, Y. (2015), “Experimental analysis on the impact force of viscous debris flow”, Earth Surf. Process. Landforms, Vol.40, pp.1644-1655.
[16] Caine, N. (1980), “The Rainfall Intensity-During Control of Shallow Landslides and Debris Flows”, Geografiska Annaler, Vol.62, pp.23-27.
[17] Fan, R. L., Zhang, L. M., Wang, H. J. and Fan, X. M. (2018), “Evolution of debris flow activities in Gaojiagou Ravine during 2008–2016 after the Wenchuan earthquake”, Engineering Geology, Vol.235, pp.1-10.
[18] Fei, X. J. and Shu, A. P. (2004), “Movement Mechanism and Disaster Control for Debris Flow”, Tsinghua University Press: Beijing.
[19] Gregoretti, C., Degetto, M. and Boreggio, M. (2016), “GIS-based cell model for simulating debris flow runout on a fan”, J. Hydrol, Vol.534, pp.326–340.
[20] Hungr, O., Morgan, G.C. and Kellerhals, R. (1984), “Quantitative analysis of debris torrent hazards for design of remedial measures”, Canadian Geotechnical Journal, Vol.21, pp.663–677.
[21] Iverson, R. M. and Vallance, J. W. (2001), “New views of granular mass flows”, Geology, Vol.29, pp.115–118.
[22] Iverson, R. M. (1997), “The physics of debris flows”, Reviews of Geophysics, Vol.35, pp.245–296.
[23] Iverson, R. M., LaHusen, R. G., Major, J. and Zimmerman, C. L. (1994), “Debris flow against obstacles and bends: dynamics and deposits”, American Geophysical Union, Vol.75, pp.274.
[24] Kaki, T. (1954), “The experimental research for mud-flow”, J. JSECE, Vol.19, pp.1-6.
[25] Li, Y., Liu, J., Su, F., Xie, J. and Wang, B. (2015), “Relationship between grain composition and debris flow characteristics: a case study of the Jiangjia Gully in China”, Landslides, Vol.12, pp.19-28.
[26] Lanzoni, S., Gregoretti, C. and Stancanelli, L.M. (2017), “Coarse-grained debris flow dynamics on erodible beds”, Journal of Geophysical Research: Earth Surface, Vol.122, pp.592-614.
[27] McCoy, S. W., Kean, J. W, Tucker, G. E., Staley, D. M., and Coe, J. A. (2013), “Runoff-generated debris flows: Observations and modeling of surge initiation, magnitude, and frequencyr”, Journal of Geophysical Research: Earth Surface, Vol.118, pp.2190-2207.
[28] McArdell, B. (2016), “Field Measurements of Forces in Debris Flows at the Illgraben: Implications for Channel-Bed Erosion”, International Journal of Erosion Control Engineering, Vol. 9, No. 4, pp. 194-198.
[29] McArdell, B., Scheidl, C. and Rickenmann, D. (2015) , “Debris-flow velocities and superelevation in a curved laboratory channel”, Can. Geotech. J., Vol. 52, pp. 305-317.
[30] McClung, D. M. (2001), “Superelevation of flowing avalanches around curved channel bends”, Jourmnal of Geophysical Research, Vol.106, pp.16489-16498.
[31] Navratil, O., Liébault, F., Bellot, H., Travaglini, E., Theule, J., Chambon, G. and Laigle, D. (2013), “High-frequency monitoring of debris-flow propagation along the Real Torrent, Southern French Prealps”, Geomorphology, Vol.201, pp.157-171.
[32] Pan, H., Jiang, Y., Wang, J. and Ou, G. (2018) “Rainfall threshold calculation for debris flow early warning in areas with scarcity of data”, Nat. Hazards Earth Syst. Sci., Vol.18, pp.1395-1409.
[33] Prochaska, A. B., Santi, P. M., Higgins, J. D. and Cannon, S. H. (2008), “A study of methods to estimate debris flow velocity”, Landslides, Vol.5, pp.431–444.
[34] Qian, N. and Wang, Z. Y. (1984), “A preliminary study on the mechanism ofdebris flow”, Acta Geographica Sinica, Vol.39, pp.33-43.
[35] Pastorello, R., D′Agostino, V., Hürlimann, M.(2020) “Debris flow triggering characterization through a comparative analysis among different mountain catchments”, Catena, Vol.186.
[36] Rickenmann, D. and Zimmermann, M. (1993), “The 1987 debris flows in Switzerland: documentation and analysis”, Geomorphology, Vol.8, pp.175-189.
[37] Rickenmann, D. and Koch, T. (1997), “Comparison of debris flow modelling approaches”, Proceedings of the first international conference. ASCE, New York, pp.576–585.
[38] Scheidl, C. McArdell, B.W. and Rickenmann, D. (2014), “Debris-flow velocities and superelevation in a curved laboratory channel”, Canadian Geotechnical Journal, Vol.52, pp.1–13.
[39] de Haas, T. and van Woerkom, T. (2016), “Bed scour by debris flows: experimental investigation of effects of debris-flow composition”, Earth Surf. Process. Landforms, Vol.41, pp.1951-1966.
[40] Takahashi, T. (2009), “A Review of Japanese Debris Flow Research”, International Journal of Erosion Control Engineering, Vol.2, No.1.pp1-14.
[41] Takahashi, T. (1981), “Estimation of potential debris flows and their hazardous zones: Soft countermeasures for a disaster”, J. Natural Disaster Science, Vol.3, pp.57–89.
[42] Takahashi, T. (1978), “Mechanical characteristics of debris flow. J. Hydraulics Div”, ASCE, Vol.104, pp.1153–1169.
[43] Tani, I. (1968), “On debris flow (Yamatsunami)”, Water Science, Vol. 60, pp.106–126.
[44] VanDine, D.F. (1985), “Debris flow and debris torrents in the Southern Canadian Cordillera”, Canadian Geotechnical Journal, Vol.22, pp.44–68.
[45] Viel, V., Fort, M., Lissak, C., Graff, K., Carlier, B., Arnaud, F. G., Cossart, E. and Madelin, A. (2018), “Debris-flow functioning and their contribution to sedimentary budgets: the Peynin subcatchment of the Guil River”, Landform Analysis, Vol.36, pp.71-84.
[46] Zanuttigh, B. and Lamberti, A. (2007), “Instability and surge development in debris flows”, Reviews of Geophysics, Vol.45, pp.1-45. |