參考文獻 |
1.郭斯傑,江立偉和羅紫萍, 「建築物外牆磁磚劣化診斷模式之研究」 ,物業管理學報,6(2),63-73頁,民國104年。
2.梁智信和林谷陶, 「外牆磁磚系統檢測技術探討」 ,中興工程,(130), 63-73頁,民國105年。
3.Matysik, M., I. Plskova, and Z. Chobola, " Assessment of the impact-echo method for monitoring the long-standing frost resistance of ceramic tiles " ,Materiali in tehnologije, 49(4): p. 639-643, 2015.
4.Cantavella, V., et al. " Use of ultrasound techniques to measure green tile bulk density and optimise the pressing process " ,IX World Congress on Ceramic Tile Quality, 2006.
5.野野瀨響, 「建築物外牆磁磚診斷方法之比較研究」 ,國立臺北科技大學,碩士論文,民國104年。
6.戴佩宜, 「以打音法從事建築外牆瓷磚非破壞檢測之研究」 ,國立高雄大學,碩士論文,民國97年。
7.顏嘉慶, 「利用打音法檢測學校建築外牆磁磚狀況之研究」 ,逢甲大學,碩士論文,民國102年。
8.Ittichaichareon, C., S. Suksri, and T. Yingthawornsuk. " Speech recognition using MFCC. in International conference on computer graphics, simulation and modeling " ,2012.
9.Madikeri, S.R. and H.A. Murthy."Mel filter bank energy-based slope feature and its application to speaker recognition",IEEE national Conference on Communications (NCC),2011
10.Nasersharif, B. and A. Akbari. " A framework for robust MFCC feature extraction using SNR-dependent compression of enhanced Mel filter bank energies ", Ninth International Conference on Spoken Language Processing, 2006.
11.Hermansky, H., " Perceptual linear predictive (PLP) analysis of speech " ,the Journal of the Acoustical Society of America, 87(4): p. 1738-1752, 1990.
12.Dave, N.," Feature extraction methods LPC, PLP and MFCC in speech recognition ",International journal for advance research in engineering and technology, 1(6): p. 1-4, 2013.
13.Todisco, M., H. Delgado, and N.W. Evans. " Articulation Rate Filtering of CQCC Features for Automatic Speaker Verification ",Interspeech, 2016.
14.Dörfler, M., R. Bammer, and T. Grill. " Inside the spectrogram: Convolutional Neural Networks in audio processing " ,IEEE international conference on sampling theory and applications (SampTA),2017.
15.Yenigalla, P., et al. " Speech Emotion Recognition Using Spectrogram & Phoneme Embedding ", Interspeech, 2018.
16.Panyavaraporn, J., P. Limsupreeyarat, and P. Horkaew, " DWT/MFCC Feature Extraction for Tile Tapping Sound Classification " ,International Journal of Integrated Engineering, 12(3): p. 122-130, 2020.
17.PK, F.A., " What is Artificial Intelligence? Success is no accident. It is hard work, perseverance, learning, studying, sacrifice and most of all, love of what you are doing or learning to do ”, p. 65, 1984.
18.Turing, A.M., " Computing machinery and intelligence, in Parsing the turing test ", Springer, p. 23-65, 2009.
19.Li, G., et al. " Understanding error propagation in deep learning neural network (DNN) accelerators and applications ",Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysi, 2017.
20.Sherstinsky, A., " Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network ", Physica D: Nonlinear Phenomena, 404: p. 132306, 2020.
21.Graves, A., A.-r. Mohamed, and G. Hinton. " Speech recognition with deep recurrent neural networks. " IEEE international conference on acoustics, speech and signal processing, 2013.
22.李曼華, 「利用類神經網路和梅爾頻率倒頻譜係數(MFCC)做語音情緒辨識」 ,臺北醫學大學,碩士論文,民國110年。
23.林冠良, 「一個基於MFCC的語者識別系統」 ,東海大學,碩士論文,民國106年。
24.李佳菁, 「應用深度學習之新生兒哭聲辨識」 ,國立雲林科技大學,碩士論文,民國105年。
25.柯惠裕, 「以梅爾倒頻譜係數為基礎之特徵擷取於鳥聲辨識之應用」 ,中華大學,碩士論文,民國97年。
26.蘇建升, 「基於MFCC智慧辨識系統用於風扇品質檢測」 ,國立雲林科技大學,碩士論文,民國109年。
27.蔣亞恬, 「基於梅爾倒頻譜係數之非侵入式膝韌帶音訊檢測系統」 ,國立臺北科技大學,碩士論文,民國103年。
28.施博翔, 「基於卷積神經網路的高樓外牆磁磚檢測」 , 國立雲林科技大學,碩士論文,民國107年。
29.Shin, H.-C., et al., " Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning ", IEEE transactions on medical imaging, 35(5): p. 1285-1298, 2016.
30.Kattenborn, T., et al., " Review on Convolutional Neural Networks (CNN) in vegetation remote sensing " ISPRS Journal of Photogrammetry and Remote Sensing, 173: p. 24-49, 2021.
31.Boureau, Y.-L., J. Ponce, and Y. LeCun. " A theoretical analysis of feature pooling in visual recognition ", Proceedings of the 27th international conference on machine learning (ICML-10), 2010.
32.Graham, B., " Fractional max-pooling ", arXiv preprint arXiv:1412.6071, 2014.
33.Liu, W., et al., " Large-margin softmax loss for convolutional neural networks "arXiv preprint arXiv:1612.02295, 2016.
34.Disabato, S. and M. Roveri. " Incremental on-device tiny machine learning ", Proceedings of the 2nd International Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things, 2020.
35.Disabato, S. and M. Roveri, " Tiny machine learning for concept drift ", arXiv preprint arXiv:2107.14759, 2021.
36.Lee, K.-C. and B.H. Cho, " Design and analysis of automotive high intensity discharge lamp ballast using micro controller unit ",IEEE Transactions on Power Electronics, 18(6): p. 1356-1364, 2003.
37.Won, T.-H. and S.-J. Park, " Design and implementation of an omni-directional underwater acoustic micro-modem based on a low-power micro-controller unit " ,Sensors,12(2): p. 2309-2323, 2012.
38.Vergin, R. and D. O′Shaughnessy. " Pre-emphasis and speech recognition ", IEEE proceedings 1995 Canadian Conference on Electrical and Computer Engineering, 1995.
39.Rapuano, S. and F.J. Harris, " An introduction to FFT and time domain windows "IEEE instrumentation & measurement magazine, 10(6): p. 32-44, 2007.
40.Wyse, L.,"Audio spectrogram representations for processing with convolutional neural networks", arXiv preprint arXiv:1706.09559, 2017.
41.Xu, H., X. Zhang, and L. Jia. " The extraction and simulation of Mel frequency cepstrum speech parameters " ,IEEE international Conference on Systems and Informatics (ICSAI2012), 2012.
42.Al-Mimi, H., et al., " A Study on New Arduino NANO Board for WSN and IoT Applications ",International Journal of Advanced Science and Technology, 29(4): p. 10223-10230, 2020.
43.Tong, F., et al., " Evaluation of tile–wall bonding integrity based on impact acoustics and support vector machine ",Sensors and Actuators A: Physical, 144(1): p. 97-104,2008.
44.Luk, B.L., et al., "Impact-acoustics inspection of tile-wall bonding integrity via wavelet transform and hidden Markov models ", Journal of sound and vibration, 329(10): p. 1954-1967, 2010.
45.Xie, L., et al., " Inspection of magnetic tile internal cracks based on impact acoustics "Nondestructive Testing and Evaluation, 30(2): p. 147-164, 2015.
46.Huang, Q., Y. Yin, and G. Yin, " Automatic classification of magnetic tiles internal defects based on acoustic resonance analysis " Mechanical Systems and Signal Processing, 60: p. 45-58, 2015
47.Cunha, R., et al. " Applying non-destructive testing and machine learning to ceramic tile quality control " IEEE VIII Brazilian Symposium on Computing Systems Engineering (SBESC), 2018.
48.Liu, L., L. Jiang, and L. Qiao. " Nondestructive Detection of Ceramic Products Based on Tapping Sound Signal Feature Recogition. in Journal of Physics: Conference Series ", IOP Publishing, 2021.
49.Wang, K., et al. " Surface Material Classification Based On Tapping Sound Characteristics ", IEEE 7th International Conference on Computer and Communications (ICCC), 2021.
50.Lu, H., et al., " Multimodal Fusion Convolutional Neural Network with Cross-attention Mechanism for Internal Defect Detection of Magnetic Tile " ,IEEE Access, 2022.
51.Fukumura, T., et al., " Improvement of Sound Classification Method on Smartphone for Hammering Test Using 5G Network ", International Journal of Networking and Computing, 12(2): p. 359-371, 2022.
52.李琳,洪青陽, 語音識別原理與應用,電子工業出版社,2020
53.柳若邊, 最專業的語音辨識全書:使用深度學習實作, 2019
54.Pete Warden,Daniel Situnayake , TinyML:TensorFlow Lite機器學習, 2020 |