博碩士論文 109322015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.119.139.183
姓名 吳柏諺(Po-Yen Wu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 天鉤主動隔震系統應用於非剛體設備物之分析與實驗驗證
相關論文
★ 主動式相位控制調諧質量阻尼器之研發與實驗驗證★ 相位控制之主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證
★ 懸臂梁形式壓電調諧質量阻尼器之 研發與最佳化設計★ 天鉤主動隔震系統應用於單自由度機構分析與實驗驗證
★ 以直接輸出回饋與參數更新迭代方法設計最佳化被動調諧質量阻尼器與多元調諧質量阻尼器★ 考慮即時濾波與衝程限制之相位控制主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證
★ 懸臂梁形式壓電調諧質量阻尼器多自由度分析與最佳化設計之減振與能量擷取研究★ 設備物應用衝程考量天鉤主動隔震系統之數值模擬分析及實驗驗證
★ 變斷面懸臂梁形式多元壓電調諧質量阻尼器於結構減振與能量擷取之最佳化設計與參數識別★ 考慮Kanai-Tajimi濾波器以直接輸出回饋進行隔震層阻尼係數之最佳化設計
★ 相位控制主動調諧質量阻尼器於非線性 Bouc-Wen Model 結構之分析★ 具凸面導軌之雙向偏心滾動隔震系統機構開發與試驗驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究提出以天鉤(Skyhook)控制理論,應用於非剛體設備物,為二自由度Skyhook主動隔震系統,文中詳細說明運動方程式之推導及控制律設計,再進行數值模擬分析及實驗驗證。改良傳統Skyhook控制理論,原需以絕對速度回饋之控制力,調整為量測主動隔震平台相對地表速度及地表加速度,以相對地表速度及將地表加速度積分濾波獲取之地表速度訊號計算控制力,不僅能提升訊號量測的便利性,更能增加回饋訊號的穩定性。由於自行引入積分濾波器其參數可被充分掌握,可將Skyhook主動隔震系統擴展為包含積分濾波器之形式,使控制及最佳化設計皆能考量積分濾波器之影響。此外,Skyhook主動隔震系統具有兩個增益參數且並非全狀態回饋,因此利用離散時間系統直接輸出回饋,以非剛體設備物絕對加速度最小化為設計目標,配合參數迭代更新方法設計最佳化增益參數。於頻率反應函數分析中,對於一般地震的顯著頻率Skyhook主動隔震系統隔震成效優於被動隔震系統。於地震歷時分析中,Skyhook主動隔震系統對於近域及遠域地震皆有較被動隔震系統優異之隔震成效。於敏感度分析中與穩定性分析中,兩個控制力增益參數於一定範圍內之變化,系統雖對於增益參數變化敏感,但系統為穩定狀態。另外探討不同主動控制律對於主動隔震系統之隔震成效,比較全狀態回饋之LQR控制律,發現Skyhook主動控制可以量測較少之物理量達到與LQR相近之隔震成效。藉由伺服滑台上固定一小型隔絕微振之被動隔振器加上質量塊即為非剛體設備物,整體實驗配置模擬二自由度Skyhook主動隔震系統之動力行為,並以振動台實驗驗證其可行性。實驗結果表明,Skyhook主動隔震系統對於大多地震皆有一定之隔震效果。實驗結果與數值模擬之差距,經由功率頻譜密度分析,確認係伺服滑台對於高頻的控制命令有其延遲所致。
摘要(英) In this study, the skyhook control theory is modified and applied to a non-rigid equipment, which becomes a two-degree-of-freedom skyhook active isolation system. The required signal of the traditional skyhook control is therefore adjusted from using the absolute velocity of the equipment to the relative velocity of active isolation platform relative to the ground and the ground absolute velocity. In addition, the ground absolute velocity signal is obtained by a designed integral filter from measuring the ground acceleration. These modifications can not only improve the convenience of signal measurement, but also increase the stability of the feedback signal. Since the parameters of the designed integral filter is well known, the dynamics of the integral filter can be fully considered in the augment system which includes the skyhook active isolation system and the integral filter. Therefore, the influence of the integral filter can be considered in the control and optimization design. The modified skyhook active isolation system has two gain parameters and is not full-state feedback, so that the two gain parameters are optimized by using the discrete-time direct output feedback with the parameter iterative update method to minimize the absolute acceleration of the non-rigid equipment. In the frequency response function analysis, the simulation results show that the skyhook active isolation system is more effective than the passive isolation system for the significant frequency range of ordinary earthquakes. In the seismic time history analysis, the skyhook active isolation system has better isolation performance than the passive isolation system for both near-fault and far-field earthquakes. In the sensitivity analysis and stability analysis, when the two control force gain parameters change within a certain range, the system is in a stable state although it is sensitive to the change of gain parameters. Furthermore, comparing with the LQR control law, it was found that the skyhook active control measures fewer signal to achieve a similar effectiveness to the LQR which using the full-state feedback. To investigate the performance and the dynamic behavior of the skyhook active control by shaking table experiment, a small passive vibration isolator with the proof mass is used to represent the non-rigid equipment. Then the non-rigid equipment is installed on a servo-controlled slider as the active skyhook isolation platform to verify the feasibility of the two-degree-of-freedom active isolation system. The experimental results show that the skyhook active isolation system has certain seismic isolation effect for most earthquakes. The difference between the experimental results and the numerical simulations was observed and confirmed by the power spectral density analysis, which was due to the delay of servo slider at high frequency command.
關鍵字(中) ★ 天鉤控制
★ 非剛體設備物
★ 二自由度主動隔震
★ 地表加速度積分回饋
★ 離散時間系統直接輸出回饋
★ 振動台實驗
關鍵字(英) ★ skyhook control
★ non-rigid equipment
★ two-degree-of-freedom active isolation
★ ground acceleration integral feedback
★ discrete-time direct output feedback
★ shaking table experiment
論文目次 摘要 i
ABSTRACT ii
目錄 iv
表目錄 vi
圖目錄 viii
符號說明 xv
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-3 研究內容 5
第二章 天鉤隔震控制理論與方程式推導 6
2-1 天鉤隔震控制理論 6
2-2 二自由度主動隔震系統方程式推導 7
2-3 最佳化控制增益參數 11
2-3-1 最佳控制增益參數之系統設置 11
2-3-2 最佳控制增益參數設計運算 14
2-4 主動隔震控制流程 15
第三章 二自由度天鉤主動隔震系統數值模擬分析 22
3-1 特徵分析 22
3-2 頻率反應函數 23
3-3 地震歷時數值模擬 26
3-3-1 輸入地震歷時 27
3-3-2 地震歷時下系統反應 28
3-4 敏感度分析 33
3-4-1 主動隔震平台勁度敏感度分析 34
3-4-2 主動隔震平台固有阻尼比敏感度分析 36
3-4-3 增益參數GD敏感度分析 38
3-4-4 增益參數GV敏感度分析 40
3-4-5 非剛體設備物勁度敏感度分析 42
3-4-6 非剛體設備物阻尼比敏感度分析 44
3-4-7 敏感度分析結果與討論 46
3-5 穩定性分析 47
第四章 天鉤主動隔震與LQR主動隔震之比較 77
4-1 頻率反應函數 77
4-2 地震歷時數值模擬 80
第五章 二自由度天鉤主動隔震系統振動台實驗 100
5-1 實驗設備與配置 100
5-2 非剛體設備物系統識別 101
5-3 控制介面與量測儀器 102
5-4 狀態預測系統之轉速控制 103
5-5 輸入之地震歷時 105
第六章 實驗結果與討論 115
6-1 振動台加速度功率譜密度115
6-2 各項反應之實驗結果116
6-3 相同震波不同PGA之比較 117
6-4 不同震波之隔震效果比較 120
6-5 實驗與數值模擬之比較 121
第七章 結論與建議 161
7-1 結論 161
7-2 未來研究與建議 165
參考文獻 166
附錄A 170
參考文獻 [1] 內政部營建署,「建築物耐震設計規範及解說」,內政部營建署台內營字第營字第0990810250號令,2011年1月。
[2] 方佩文,「『震』撼南科!台積電、群創成受災戶損失破億」,三立新聞,2016年2月。2022年3月12日,取自https://www.setn.com/News.aspx?NewsID=124276。
[3] 黃振興、黃尹男、黃仁傑,「微電子廠採用隔震設計之可行性試驗研究」,國家地震工程研究中心,編號 NCREE 02-023, 2002年。
[4] 栗正暐、黃宣諭,「高科技半導體廠結構設計之關鍵考量」,土木水利,第四十六卷,第六期,社團法人中國土木水利工程學會,2019年12月,30-37頁。
[5] Soong, T.T., Spencer, B.F., Jr., “Active, semi-active and hybrid control of structures, ” Bulletin of the New Zealand Society for Earthquake Engineering, 33(3), 2000, pp. 387-402.
[6] Robinson W.H. and Tucker A.G., “Test Results for Lead-Rubber Bearings for WM. Clayton Building, Toe Toe Bridge and Waiotukupuna Bridge,” Bulletin of the New Zealand National Society for Earthquake Engineering, 14(1), 1981, pp. 21-33.
[7] Han X. and Marin-Artieda C., “A Case Study on the Seismic Protection of Equipment Using Lead-Rubber Bearings,” Structures Congress, 2015, pp. 1962-1974.
[8] Gowardhan S.D. and Deosarkar M.U., “Protection of the Buildings from the Earthquake Risk Using High Damping Rubber Bearing,” Journal of Civil Engineering and Environmental Technology, 2015, pp. 27-31.
[9] Reggio A. and Angelis M.D., “Combined primary-secondary system approach to the design of an equipment isolation system with High-Damping Rubber Bearings,” Journal of Sound and Vibration, 333, 2014, pp. 2386-2403.
[10] Jangid R.S., “Optimum friction pendulum system for near-fault motions,” Engineering Structures 27, 2005, pp.349-359.
[11] 林瑞泰,「滑動式隔震平台應用於振動敏感性設備之地震模擬試驗」,國立交通大學,碩士論文,2020年。
[12] 洪家翔,「斜面式滾動隔震支承之分析模型建立與驗證」,國立台灣科技大學,碩士論文,2013年。
[13] 卓忠陽,「斜面式滾動隔震支承之多軸向遲滯行為試驗與地震力位移反應探討」,國立台灣科技大學,碩士論文,2017年。
[14] 汪向榮、林旺春、游忠翰、楊卓諺,「應用於斜面滾動隔震技術提升重要設備耐震性能」,土木水利,第四十四卷,第一期,2017年。
[15] Yang J.N., Li Z. and Liu S.C., “Stable controllers for instantaneous optimal control,” Journal of Engineering Mechanics, 118(8), 1992, pp.1612-1630.
[16] Nishimura H. and Kojima A., “Active vibration isolation control for a multi-degree-of- freedom structure with uncertain base dynamics,” JSME International Journal Series C-mechanical Systems Machine Elements and Manufacturing, 41(1), 1998, pp.37-45.
[17] Nagarajaiah S., Riley M.A., Reinhorn A.M., “Control of sliding isolated bridge with absolute acceleration feedback,” Journal of Engineering Mechanics, 119(11), 1993, pp. 2317-2332.
[18] Chang C.M. and Spencer B.F. “Active base isolation of buildings subjected to seismic excitations,” Earthquake Engineering&Structural Dyanmics, 39(13), 2010, pp. 1493-1512.
[19] Barbat A.H., RodEllar J., Ryan E.P., Monlinares N., “Active control of nonlinear base-isolated buildings,” Journal of Engineering Mechanics, 121(6), 1995, pp. 676-684.
[20] Venanzi I., Ierimonti L., Matrazzi A.L., “Active Base Isolation of Museum Artifacts under Seismic Excitation,” Journal of Earthquake Engineering, 24(2), 2018.
[21] Yan B., Brennan M.J., Elliott S.J. and Ferguson N.S., “Active vibration isolation of a system with a distributed parameter isolator using absolute velocity feedback control,” Journal of Sound and Vibration, 329(10), 2010, pp. 1601-1614.
[22] Gardonio P., Elliott S.J., Pinnington R.J., “Active isolation of structural vibration on a multiple-degree-of-freedom system, Part I: The dynamics of the system,” Journal of Sound and Vibration, 207(1), 1997, pp. 61-93.
[23] Gardonio P., Elliott S.J., Pinnington R.J., “Active isolation of structural vibration on a multiple-degree-of-freedom system, Part II: Effectiveness of active control strategies,” Journal of Sound and Vibration, 207(1), 1997, pp. 95-121.
[24] Farshidianfar A., Saghafi A., Kalami S.M. and Saghafi I., “Active vibration isolation of machinery and sensitive equipment using H∞ control criterion and particle swarm optimization method,” Meccanica, 47, 2012, pp. 437-453.
[25] Mikhailov V.P., Aung T.L., Kopylov A.A. and Tovmachenko D.K., “Platform for Active Vibration Isolation of the Precision Equipment Based on Magnetorheological Elastomers,” IEEE, 2018, pp. 1992-1995.
[26] Yu L., Rao C. and Du L., “An Active Control Method for Vibration Isolation of Precision Equipment,” ISECS, pp. 368-371.
[27] 劉雲輝、吳偉豪,「主動隔振技術簡介」,中華民國力學學會第 142 期會訊專題報導,2013年。
[28] 吳偉豪,「運用適應性訊號處理與比例控制於主動隔振系統之研究」,南台科技大學,碩士論文,2013年6月。
[29] Gavin H. and Zaicenco A., “Performance and reliability of semi-acitve equipment isolation,” Journal of Sound and Vibration, 306(1), 2007, pp. 74-90.
[30] Renzi E. and De AngElis M., “Optimal semi-active control and non-linear dynamic response of variable stiffness structures,” Journal of Vibration and Control, 11(10), 2005, pp. 1253-1289.
[31] Lee T.Y. and Kawashima K., “Control of seismic-excited nonlinear isolated bridges with variable viscous dampers,” Journal of Earthquake Engineering, 28, 2005.
[32] Lu L.Y. and Lin G.L., “Predictive control of smart isolation sysem for precision equipment subjected to near-fault earthquakes,” Engineering Structures, 30, 2008, pp. 3045-3064.
[33] Lu L.Y., Lin G.L., Hung J.H., Liu Y.T., “Experimental Study of a PiezoElectric Sliding Isolation System for Seismic Protection of Equipment,” Proceedings of the 8th International Conference on Structural Dynamics, 2011, pp.1962-1967.
[34] Fan Y.C., Loh C.H., Yang J.N., Lin P.Y., “Experimental performance evaluation of an equipment isolation using MR dampers,” Earthquake Engineering Structure Dynamics, 38, 2009, pp. 285-305.
[35] 陳佳恩,「Skyhook主動隔震系統應用於單自由度機構分析與實驗驗證」,國立中央大學,碩士論文,2021年。
[36] Chopra A.K., Dynamics of Structures Theory and Applications to Earthquake Engineering, Fourth edition, New York, Pearson, 2015.
[37] 羅偉宸,「主動式相位控制調諧質量阻尼器之研發與實驗驗證」,國立中央大學,民國2020年6月。
指導教授 賴勇安(Yong-An Lai) 審核日期 2022-9-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明