博碩士論文 108322058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.15.139.79
姓名 洪上峰(Shang-Feng Hong)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 細粒料含電弧爐碴之檢測方法及對混凝土性質影響研究
(Study on the detection method of fine aggregate containing electric arc furnace slag and its influence on properties of concrete.)
相關論文
★ 台61線快速道路養護經費與平坦度分析-以2007-2019為例★ 應用於高放處置設施之低鹼性混凝土性質及其對緩衝材料影響之研析
★ 溫度對預拌型超早強混凝土性質之影響及相應策略★ 紙漿污泥焚化爐飛灰資源化應用作為CLSM細粒料之可行性研究
★ 燃煤飛灰與底灰應用於陶瓷建材之初步研究★ 以加速環境探討含電弧爐碴砂漿之膨脹行為 及工程性質影響
★ 砂膠比與纖維種類對3D列印混凝土的工程性質影響研究★ 硫鋁酸鈣水泥複合膠結材之配比與工程性質之研究
★ 營建剩餘土石方收容處理場所評鑑制度之研究-以桃園市為例★ 溫度對複合添加凝結型及硬化型加速劑的預拌高早強水泥漿體及砂漿之工程性質影響研究
★ 永續材料及纖維應用於3D列印混凝土之工程性質探討★ 硫鋁酸鈣水泥複合膠結材料之工程性質及抗硫酸鹽能力研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 自松菸文創爐碴屋事件之後政府開始重視廢棄爐碴之管制,並且針對爐碴之再利用新增及修正相關管理條文,但目前國內較缺乏系統化之爐碴再利用流程與檢測標準,且由於現行法規較無詳細之爐碴檢測方式,業界所執行之標準亦多為自行制定,因此,本研究通過建立電弧爐碴用於水泥基質材料時之檢測方式並提出參考之標準,以補充此部分之缺失。
本研究主要針對含電弧爐碴之細粒料,藉由對其進行化學分析(pH值試驗分析、酚酞變色試驗、光學顯微鏡分析及XRF元素含量)及物理分析(膨脹量試驗、外觀形貌及抗壓強度)方式,探討摻入電弧爐碴對細粒料及水泥基質材料之影響,並以此為基礎初步建立系統化檢測標準,期以此提出較為簡易、快速、準確且可以因地制宜之檢測方法,以保證結構物之安全性。
化學分析方面,首先提出pH值標準作業化流程,通過以不同粒料類型、粒徑、固含量、水質情況與濾紙規格時之測試結果,提出簡易且準確之測試方式,且藉由前導試驗決定之控制變因進行爐碴摻配之pH值試驗,探討不同摻配量對pH值之影響,並分析各種爐碴在不同粒徑大小與摻配比例下之變化;酚酞變色實驗中,藉由酚酞因鹼性變色原理,探討爐碴尺寸及摻配量與酚酞顏色變化之關係;光學顯微鏡分析則以酚酞直接噴灑粒料表層並藉由光學顯微鏡進行觀察,並透過顆粒計算方式及面積計算方式探討選擇最適合之計算方式及其最大誤差值;藉由XRF分析可得爐碴之化學成分,並綜合化學分析之結果與物理分析做綜合探討。物理分析方面則主要探討不同摻配比例之爐碴對於水泥基質材料之影響。膨脹量試驗選用環境為高溫高鹼、高溫高壓及常溫常壓(室溫環境),藉由不同環境下探討不同摻配下爐碴對於水泥基質材料膨脹量之影響,抗壓強度選用環境為高溫高壓環境並進行2次蒸壓,探討抗壓強度、摻配比例及蒸壓次數之關係。
化學分析之結果顯示,測試結果之pH值隨粒徑縮小而提升,且可通過pH值是否≥ 9判別粒料摻有爐碴之可能。經測試後之酚酞所呈現之顏色主要為透明/白色、淡紅色以及深紅色,且顏色飽和程度隨粒徑縮小及摻量提升而增加。光學顯微鏡分析以顆粒計算爐碴方式中大區域爐碴最大佔比方式計算較為適用,最大誤差不超過20%。由XRF可知天然粒料主要成分為SiO2,其次為Al2O3,而氧化碴與還原碴皆以CaO為主。物理分析結果顯示,使用室溫環境之檢測方式,須將試驗齡期提升至120天以上,方能觀測其與對照組之差異。使用高溫高鹼環境之檢測方式,試驗齡期5天時即可有效觀察砂漿棒因爐碴膨脹性造成之影響,多數試體斷裂情況須達到齡期21天。使用高溫高壓環境之檢測方式發現,其蒸壓後之膨脹量隨爐碴摻配量提升而增加,蒸壓後之抗壓強度則出現不同程度損失。砂漿棒之膨脹量隨蒸壓時間之增加而提升,在3小時時提升約達1.0至1.4倍,增加至6小時時再提升約達1.0至1.6倍,藉此可觀察爐碴之膨脹現象。砂漿塊蒸壓劣化後,藉由試體外觀形貌進行初步分級,由優至劣分別為A-E五級。其抗壓強度試驗結果顯示,在3小時時約損失約達1.2至3.4倍,增加至6小時時氧化碴抗壓強度再損失約達1.1至1.5倍,還原碴則在6小時強度較不穩定,可能為高溫環境下促進水泥與還原碴之水化反應。
藉由試驗結果訂定爐碴檢測流程:(1)將樣本首先通過酚酞變色試驗進行初步判別,(2)使用pH值試驗進行驗證其摻有爐碴之比例範圍,(3)以光學顯微鏡之顆粒計算方式推測其爐碴準確含量,(4)若所含之比例過高則可製作砂漿試體進行高溫高壓環境檢測用以驗證其安全性。
摘要(英) This research aims to evaluate the characteristic of fine particles containing electric arc furnace slags, by chemical analysis (pH value analysis, Phenolphthalein Test, optical microscope analysis, and XRF analysis) and physical analysis (expansion test, appearance and morphology, and Compressive strength test), to explore the influence of adding electric arc furnace slags on fine aggregates and cement matrix materials, and to initially establish a systematic testing standard based on those results. This research desires to put forward a simpler, faster, more accurate testing method that can be adapted to local conditions, to ensure the safety of the structure.
The results of the chemical analysis show that the pH value of the test results increases with the reduction of particle size. The possibility that the pellets are mixed with slag can be judged by whether the pH value is ≥ 9. The color of phenolphthalein after testing is mainly transparent/white, light red, and dark red, and the color saturation degree increases with the decrease of particle size and the increase of dosage. Optical microscope analysis is more suitable for calculating the maximum proportion of large-area slags in the particle calculation, and the maximum error does not exceed 20%. It can be seen from XRF that the main component of natural pellets is SiO2, followed by Al2O3. Both the oxidized slags and the reduced slags are mainly composed of CaO. The results of the physical analysis show that, for the control group, the test age must be increased to more than 120 days in order to observe differences when using the detection method at room temperature. Using the detection method in high temperature and high alkali environment, the influence of the mortar rod due to the expansion of the slag can be effectively observed when the test age is 5 days. Testing those specimens in high temperature and high-pressure environment, it was found that the expansion amount after autoclaving increased with the increase of the slags mixed, and the compressive strength after autoclaving showed different degrees of strength reduction. The expansion of the mortar bar increases with the increase of the autoclaving time. The expansion of the slags can be observed about 1.0 to 1.4 times at 3 hours, and then increases by about 1.0 to 1.6 times when it increases to 6 hours. After the autoclaved deterioration of the mortar block, preliminary classification was carried out based on the appearance of the specimen, and the grades were A-E from good to bad. The compressive strength test results show that the reduction is about 1.2 to 3.4 times at 3 hours, the compressive strength of oxidized slags is reduced by about 1.1 to 1.5 times when it increases to 6 hours, and the reduced slags are less stable at 6 hours. These results can be explained due to the hydration reaction of cement and reduced slags under high temperature.
According to this research results, the slags detection process is determined as follows: (1) The sample is firstly judged by the phenolphthalein discoloration test, (2) The pH value test is used to verify the proportion of the slags mixed, (3) The optical microscope is used to determine the proportion of the slags. The particle calculation method infers the accurate content of the slag. (4) If the proportion contained is too high, a mortar sample can be made for high temperature and high-pressure environmental testing to verify its safety.
關鍵字(中) ★ 電弧爐碴
★ pH 值檢測
★ 光學顯微鏡分析
★ XRF
★ 砂漿劣化
關鍵字(英) ★ electric arc furnace slag
★ pH value
★ optical microscope analysis
★ XRF
★ mortar deterioration
論文目次 摘要........................................................................................................................................ I
Abstract ............................................................................................................................... III
致謝....................................................................................................................................... V
目錄........................................................................................................................................ I
圖目錄................................................................................................................................... V
表目錄............................................................................................................................... VIII
第一章 緒論 ......................................................................................................................... 1
1.1 研究背景 ....................................................................................................................1
1.2 研究動機 ....................................................................................................................2
1.3 研究目的 ....................................................................................................................3
第二章 文獻回顧 ................................................................................................................. 5
2.1 爐碴的分類及製作流程 ............................................................................................5
2.1.1 爐碴基本定義 .................................................................................................5
2.1.2 一貫作業煉鋼廠 .............................................................................................6
2.1.3 電弧爐煉鋼廠 .................................................................................................7
2.2 爐碴資源化再利用情況 ............................................................................................8
2.2.1 歷年申報數量 .................................................................................................8
2.2.2 資源化再利用 .................................................................................................9
2.2.3 鋼碴之相關法規 ........................................................................................... 11
2.3 電弧爐碴性質 .......................................................................................................... 11
2.3.1 爐碴礦物組成 ............................................................................................... 11
2.3.2 化學成分 .......................................................................................................12
2.3.3 物理性質 .......................................................................................................14
2.4 爐碴膨脹原因 ..........................................................................................................15
2.4.1 C2S 晶相的轉變 ..........................................................................................15
2.4.2 f-MgO 的水化反應 ......................................................................................16
2.4.3 f-CaO 的水化反應 .......................................................................................16
2.5 電弧爐氧化碴安定化方法 ......................................................................................18
II
2.5.1 固熔前安定化方法 .......................................................................................18
2.5.2 熱壓安定法 ...................................................................................................19
2.5.3 碳酸化處理法 ...............................................................................................19
2.6 爐碴檢測方法 ..........................................................................................................19
2.6.1 pH 值檢測法 .................................................................................................20
2.6.2 磁吸法 ...........................................................................................................22
2.6.3 熱壓膨脹法 ...................................................................................................23
2.6.4 f-CaO 檢測法 ................................................................................................23
2.6.5 f-MgO 檢測法 ...............................................................................................23
2.6.6 比重法 ...........................................................................................................24
第三章 研究規劃 ............................................................................................................... 25
3.1 研究構想 ..................................................................................................................25
3.2 試驗流程 .................................................................................................................25
3.3 pH 值標準作業化流程前導試驗 ............................................................................27
3.3.1 決定試驗參數 ...............................................................................................27
3.3.2 使用水種類 ...................................................................................................28
3.3.3 粒料佔溶液總重量百分比 ...........................................................................28
3.3.4 使用濾紙種類 ...............................................................................................28
3.3.5 粒料粒徑尺寸 ...............................................................................................29
3.4 試驗說明 .................................................................................................................29
3.4.1 砂漿拌和程序 ...............................................................................................29
3.4.2 試體養護方法 ...............................................................................................29
3.4.3 pH 值試驗 .....................................................................................................29
3.4.4 酚酞變色試驗 ...............................................................................................29
3.4.5 光學顯微鏡判別分析 ...................................................................................30
3.4.6 X 光螢光分析法(XRF) .................................................................................30
3.4.7 熱壓膨脹試驗-模擬高溫高壓環境 ..............................................................30
3.4.8 仿C1260 試驗-模擬高溫高鹼環境 .............................................................30
3.4.9 抗壓強度試驗 ...............................................................................................30
3.5 試驗材料 ..................................................................................................................31
3.5.1 水泥 ...............................................................................................................31
3.5.2 試驗粒料 .......................................................................................................32
3.6 試驗儀器 ..................................................................................................................34
第四章 試驗結果與討論.................................................................................................... 39
4.1 pH 值影響因子探討 ................................................................................................39
4.1.1 試驗用水 .......................................................................................................39
4.1.2 試驗固含量設計 ...........................................................................................43
4.1.3 試驗濾紙規格 ...............................................................................................45
4.1.4 粒料樣本粒徑 ...............................................................................................47
4.2 pH 值試驗結果 ........................................................................................................49
4.2.1 氧化碴 ...........................................................................................................49
4.2.2 還原碴 ...........................................................................................................65
4.3 酚酞變色試驗結果分析 .........................................................................................69
4.4 光學顯微鏡判別分析 ..............................................................................................70
4.4.1 顆粒計算分析 ...............................................................................................71
4.4.2 面積計算分析 ...............................................................................................75
4.5 XRF 試驗結果 .........................................................................................................81
4.6 砂漿試體力學與耐久性質分析 ..............................................................................85
4.6.1 膨脹量分析 ...................................................................................................85
4.6.2 砂漿塊蒸壓劣化測試 .................................................................................107
4.7 綜合討論 ................................................................................................................ 117
4.7.1 pH 值測試 ................................................................................................... 117
4.7.2 其他檢測方法 ............................................................................................ 118
4.7.3 砂漿性質測試 ............................................................................................. 118
4.8 檢測流程設計及判別標準訂定 ............................................................................120
4.8.1 檢測方式判別標準 .....................................................................................120
4.8.2 爐碴檢測流程訂定 .....................................................................................122
第五章 結論與建議 ......................................................................................................... 125
5.1 結論 ........................................................................................................................125
5.2 建議 ........................................................................................................................127
IV
參考文獻............................................................................................................................ 129
表附錄................................................................................................................................ 133
A. 試驗總表 ................................................................................................................133
圖附錄................................................................................................................................ 139
A. 光學顯微鏡判別分析 ............................................................................................139
B. 砂漿棒室溫組 ........................................................................................................143
C. 砂漿棒高溫高鹼組 ................................................................................................147
D. 砂漿棒高溫高壓組 ................................................................................................151
E. 砂漿塊室溫對照組 .................................................................................................157
F. 砂漿塊高溫高壓組 .................................................................................................159
參考文獻 參考文獻
[1]. 張俊鴻、徐敏晃,「煉鋼爐碴對混凝土之影響與防治探討」,土木水利,第4期,第43卷,Aug.2016。
[2]. 蘋果日報,「驚台北文創竟是爐渣屋頻破洞影響耐震 業者稱結構安全」,Mar. 2016。
[3]. 自由時報,「爐碴鋪出波浪路 國工局被糾正」,Nov.15 2009。
[4]. 研商建築物結構用混凝土細粒料酸鹼值檢測實施要點(草案)會議紀錄http://www.treca.org.tw/component/k2/6118-1081271071.html
[5]. 細粒料含爐碴檢測方法(pH 值-加速膨脹檢測法)
https://reurl.cc/yr9nOa
[6]. 王博,「鋼渣中游離氧化鈣、游離氧化鎂的測定及其安定性研究」,北京化工大學,碩士論文,2010。
[7]. 蔡柏棋、徐登科,「爐石與應用」,土木技師公會技師報,第938期,第2頁,2014。
[8]. 黃偉倫,「爐碴在水泥基質材料中的膨脹行為及安定化方式初探」,中原大學土木工程學系,碩士論文,2015。
[9]. M. Tossavainen, F. Engstrom, Q. Yang, N. Menad, M. Lidstrom Larsso and B.Bjorkman, “Characteristics of steel slag under different cooling conditions” Waste Management, 27, pp.1335-1344,2007.
[10]. 經濟部工業局,「電弧爐還原碴安定化技術手冊」,(2017)。
[11]. 行政院環境保護署,「重點事業廢棄物-爐碴之處理方式」,網址:https://data.epa.gov.tw/dataset/detail/WR_P_180。
[12]. 經濟部事業廢棄物再利用管理辦法-110年https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0030047
[13]. 臺灣土木技師公會技師報No.938,Nov.29.2014
[14]. 經濟部事業廢棄物再利用管理辦法-107年
[15]. 刑金池,「電弧爐氧化碴資源化利用研究」,台北科技大學,碩士論文,2000。
[16]. 財團法人臺灣營建研究院,「電弧爐氧化碴(石)道路工程應用材料性質評估暨技術手冊編訂(材料篇)專案計畫」,2015。
[17]. 財團法人臺灣營建研究院,「煉鋼爐碴特性說明及相關管理法規、標準與規範介紹」,煉鋼爐碴資源化最佳途徑及混凝土工程應用管控策略研習會論文集,2016。
[18]. 王紹宇,「電弧爐氧化碴氧離氧化鈣及氧化鎂檢測技術及安定化評估方法探討」,中原大學土木工程學系,碩士論文,2017。
[19]. 孫樹杉,「煉鋼碴在建築材料工業中應用」,經濟部工業局,1999。
[20]. 石大鑫,「冶金渣的綜合利用」,礦業技術,第266-267頁,1992。
[21]. 中聯資源股份有限公司。
[22]. 鄭清元,「電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究」,國立中央大學土木工程學系,碩士論文,1999。
[23]. Geiseler, J, and Schlosser, R., “Investigations Concerning Structure and Properties of Steel Slags,” Proceedings of the 3rd International Congress on Molten Slag and Fluxes, pp.40-42.1988.
[24]. 黃兆龍,「高爐熟料及飛灰材料在混凝土工程之應用」,中國工程學刊,1986。
[25]. 刑金池,「電弧爐氧化碴資源化利用研究」,台北科技大學材料及資源工程系,碩士論文,2004。
[26]. 劉邦龍,「爐碴作為混凝土細粒料的膨脹安定化方法及檢測技術研究」,國立中央大學土木工程學系,碩士論文,2013。
[27]. 財團法人臺灣營建研究院,「電弧爐氧化碴(石)道路工程應用材料性質評估暨技術手冊編訂(材料篇)專案計畫」,2015。
[28]. Monaco, A., and Wu, W. K., “The Effect of Cooling Conditions on the Mineralogical Characterization of Steel Slag,” Proceedings of the 33rd International Symposium on Resource Conservation and Environmental Technologies in Metallurgida Industries, pp.107-116.1994.
[29]. Chan, C. J., Kriven, W. M., & Young, J. F. Physical stabilization of the β → γ transformation in dicalcium silicate. Journal American Ceramic Sociaty, 75(6), pp.1621-1627.1992.
[30]. 陳立,「電弧爐氧化碴為混凝土骨材之可行性研究」,國立中央大學土木工程學系,博士論文,2003。
[31]. Geiseler, J,and Schlosser, R., “Investigations Concerning Structure and Properties of Steel Slags,” Proceedings of the 3rd International Congress on Molten Slag and Fluxes,pp.40~42.1988.
[32]. 鄭清元,「電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究」,國立中央大學碩士論文,2000。
[33]. 經濟部工業局,「電弧爐還原碴安定化技術手冊」,2017。
[34]. Tsuyoshi Sasaki, Takuji Hamazaki, “Development of Steam-aging Process for Steel Slag” NIPPON STEEL & SUMITOMO METAL TECHNICAL REPORT, No.109, pp23-26.2015.
[35]. 蔣本基、潘述元、鍾岱均、陳劼立、蔣坤安,「應用碳酸化程序進行二氧化碳補集與煉鋼爐碴再利用」,國立臺灣大學環境工程研究所,2015。
[36]. Liwu Mo, Feng Zhang, Min Deng, Fei Jin, Abir Al-Tabbaa and Aiguo Wang, “Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates” Cement and Concrete Composites, 83, p.138-145.2017.
[37]. 亞東預拌混凝土股份有限公司,AMS 砂石爐碴快篩檢測法,2020。
[38]. 楊仲家,「防堵有害爐碴誤用於混凝土-細粒料中有害爐碴快篩法」,杜風電子報,第101期,2016。
[39]. 杜君、劉家祥、李敏,「乙二醇-EDTA滴定法與熱解重量-示差熱分析法相結合測定鋼渣中游離氧化鈣含量」,理化檢驗-化學分冊,第49卷,第961-964頁,2013。
[40]. 王紹宇,「電弧爐氧化碴氧離氧化鈣及氧化鎂檢測技術及安定化評估方法探討」,中原大學土木工程學系,碩士論文,2017。
[41]. 王博、劉家祥、羅珣、朱桂林、盧忠飛,「EDTA滴定法測定鋼碴中游離氧化鎂」,理化檢驗-化學分冊,第47卷,第942-943頁,2011。
[42]. Hanada Kazutoshi, Inose Masao and Fujimoto Kyoko, “Developent of Analytical Methods for Free-MgO in Steelmaking Slag.”JFE TECHNICAL REPORT, No.22, pp.39-43.2017..
[43]. 李文鐘,「選礦學」,世界印行,1971。
指導教授 王韡蒨(Wei-Chien Wang) 審核日期 2022-9-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明