參考文獻 |
[1]郭豐瑋,2017,高速公路旅行時間預測之研究-函數資料分析之應用,國立中央大學土木工程學系碩士論文,桃園縣。
[2]陳惠國,2021,研究分析方法講義,國立中央大學土木工程學系,桃園市。
[3]楊博鈞,2018,應用函數混合模型預測捷運車站運量,碩士論文,國立中央大學土木工程學系,桃園縣。
[4]劉緯紳,2022,以乘客移動信令資料推斷臺北捷運乘客搭乘路徑與車站間運量,碩士論文,國立中央大學土木工程學系,桃園市。(草稿)
[5]Aguilera, Vincent, Sylvain Allio, Vincent Benezech, Francois Combes, and Chloe Milion, 2014. Using cell phone data to measure quality of service and passenger flows of Paris transit system. Transportation Research Part C: Emerging Technologies 43, 198-211, doi: https://doi.org/10.1016/j.trc.2013.11.007.
[6]Ahmed, Mohamed S., and Allen R. Cook, 1979. Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Transportation Research Board 722, 1-9.
[7]Ash, Robert B., and Melvin F. Gardner, 1975. Topics in Stochastic Process. Academic Press, New York. (ISBN:978-1-483-19143-0)
[8]Bovy, Piet H.L., Rogier Uges, and Sascha Hoogendoorn-Lanser, 2005. Modeling route choice behavior in multi-modal transport networks. Transportation 32, 341-368, doi: https://doi.org/10.1007/s11116-004-7963-2.
[9]Calabrese, Francesco, Giusy Di Lorenzo, Liang Liu, and Carlo Ratti, 2011. Estimating Origin-Destination flows using mobile phone location data. IEEE Pervasive Computing 10(4), 36-44, doi: https://doi.org/10.1109/MPRV.2011.41.
[10]Chen, Huey-Kuo, 2015. Travel time prediction for time-table-based vehicles traveling on known routes. Journal of the Eastern Asia Society for Transportation Studies 11, 1082-1096, doi: https://doi.org/10.11175/easts.11.1082.
[11]Chen, Huey-Kuo, Hsiao-Ching Ho, Luo-Yu, Ian Lee, Huey-Wen Chou, 2022. Two-stage procedure for transportation mode detection based on sighting data. Transportmetrica A: Transport Science, doi: https://doi.org/10.1080/23249935.2022.2118558.
[12]Chen, Huey-Kuo, and Che-Jung Wu, 2012. Travel time prediction using empirical mode decomposition and gray theory: example of National Central University bus in Taiwan. Transportation Research Record: Journal of the Transportation Research Board 2324(1), 11-19, doi: https://doi.org/10.3141/2324-02.
[13]Chin, Kimberley, Haosheng Huang, Christopher Horn, Ivan Kasanicky, and Robert Weibel, 2019. Inferring fine-grained transport modes from mobile phone cellular signaling data. Computers, Environment and Urban Systems 77, 101348, doi:
https://doi.org/10.1016/j.compenvurbsys.2019.101348.
[14]Chiou, Jeng-Min, 2012. Dynamical functional prediction and classification with application to traffic flow prediction. The Annals of Applied Statistics 6(4), 1588-1614, doi: https://doi.org/10.1214/12-AOAS595.
[15]Chiou, Jeng-Min, and Pai-Ling Li, 2007. Functional clustering and identifying substructures of longitudinal data. Journal of the Royal Statistical Society Series B, Statistical Methodology 69(4), 679-699, doi:
https://doi.org/10.1111/j.1467-9868.2007.00605.x.
[16]Chung, Junyoung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio, 2014. Empirical evaluation of gate recurrent neural networks on sequence modeling. ArXiv abs/1412.3555.
[17]Cho, Kyunghyun, Bart Van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio, 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 1724-1734, doi: https://doi.org/10.3115/v1/D14-1179.
[18]Gonzalez, Marta C., Cesar A. Hidalgo, and Albert-Laszlo Barabasi, 2008. Understanding individual human mobility patterns. Nature 453, 779-782, doi:
https://doi.org/10.1038/nature06958.
[19]Grange, Louis de, Sebastian Raveau, Felipe González, 2012. A fixed point route choice model for transit networks that addresses route correlation. Social and Behavioral Sciences 54, 1197-1204, doi: https://doi.org/10.1016/j.sbspro.2012.09.834.
[20]Graves, Alex, 2012. Supervised sequence labelling with recurrent neural networks. Springer Berlin, Heidelberg. (ISBN:978-3-642-24797-2)
[21]Ho, Hsiao-Ching, 2020. Inferring transportation modes (bus or vehicle) from mobile phone data using support vector machine and deep neural network. Master’s Thesis, National Central University, Taiwain.
[22]Hochmair, Hartwig, 2009. The influence of map design on route choice from public transportation maps in urban areas. The Cartographic Journal 46, 242-256, doi:
https://doi.org/10.1179/000870409X12472347560623.
[23]Hochreiter, Sepp, and Jurgen Schmidhuber, 1997. Long short-term memory. Neural Computation 9(8), 1735-1780, doi: https://doi.org/10.1162/neco.1997.9.8.1735.
[24]Holleczek, Thomas, Dang The Anh, Shanyang Yin, Yunye Jin, Spiros Antonatos, Han Leong Goh, Samantha Low, and Amy Shi-Nash, 2015. Traffic measurement and route recommendation system for mass rapid transit (MRT). Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, 10-13 August, 1859-1868, doi: https://doi.org/10.1145/2640087.2644196.
[25]Hou, Yi, and Praveen Edara, 2018. Network scale travel time prediction using deep learning. Transportation Research Record: Journal of the Transportation Research Board 2672(45), 115-123, doi: https://doi.org/10.1177/0361198118776139.
[26]Huang, Haosheng, Yi Cheng, and Robert Weibel, 2019. Transport mode detection based on mobile phone network data: A systematic review. Transportation Research Part C: Emerging Technologies 101, 297-312, doi: https://doi.org/10.1016/j.trc.2019.02.008.
[27]Jagadeesh, George R., and Thambipillai Srikanthan, 2017. Online map-matching of noisy and sparse location data with hidden Markov and route choice models. IEEE Transactions on Intelligent Transportation Systems 18(9), 2423-2434, doi:
https://doi.org/10.1109/TITS.2017.2647967.
[28]Jeong, Young-Seon, Young-Ji Byon, Manoel Mendonca Castro-Neto, and Said M. Easa, 2013. Supervised weighting-online learning algorithm for short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems 14(4), 1700-1707, doi: https://doi.org/10.1109/TITS.2013.2267735.
[29]Jia, Yuhan, Jianping Wu, and Ming Xu, 2017. Traffic flow prediction with rainfall impact using a deep learning method. Journal of Advanced Transportation 2017(722), 1-10, doi: https://doi.org/10.1155/2017/6575947.
[30]Kuang, Ai-Wu, and Huang Zhong-Xiang, 2004. Short-term traffic flow prediction based on RBF neural network. Systems Engineering 22 (2), 63-65.
[31]Leurent, Fabien, 2009. On seat congestion, passenger comfort and route choice in urban transit: A network equilibrium assignment model with application to Paris. Transportation Research Board 88th Annual Meeting Jan 11-15, Washington.
[32]Li, Guanyao, Chun -Jie Chen, Sheng-Yun Huang, Ai-Jou Chou, Xiaochuan Gou, Wen-Chih Peng, and Chih-Wei Yi, 2017. Public transportation mode detection from cellular data. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, 6-10 November, 2499-2502. doi:
https://doi.org/10.1145/3132847.3133173.
[33]Ma, Xiaolei, Zhimin Tao, Yinhai Wang, Haiyang Yu, and Yunpeng Wang, 2015. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C: Emerging Technologies 54, 187-197, doi: https://doi.org/10.1016/j.trc.2015.03.014.
[34]Nagasaki, Y., M. Asuka, and K. Komaya, 2006. A fast method for estimating railway passenger flow. Computers in Railways X, 179-187.
[35]Newson, Paul, and John Krumm, 2009. Hidden markov map matching through noise and sparseness. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,Seattle, 4-6 November, 336-343, doi:
https://doi.org/10.1145/1653771.1653818.
[36]Raveau, Sebastian, Zhan Guo, Juan Carlos Munoz, Nigel H.M. Wilson, 2012. A behavioural comparison of route choice on metro networks: Time, transfers, crowding, topology and socio-demographics, Transportation Research Part A: Policy and Practice 66(1), 185-195, doi: https://doi.org/10.1016/j.tra.2014.05.010.
[37]Sun, Yanshuo, and Ruihua Xu, 2012. Rail transit travel time reliability and estimation of passenger route choice behavior: analysis using automatic fare collection data. Transportation Research Record 2275(1), 58-67, doi: https://doi.org/10.3141/2275-07.
[38]Vanajakshi, Lelitha, and Laurence R. Rilett, 2007. Support vector machine technique for the short term prediction of travel time. IEEE Intelligent Vehicles Symposium, 600-605, doi: https://doi.org/10.1109/IVS.2007.4290181.
[39]Wang, Feilong, and Cynthia Chen, 2018. On data processing required to derive mobility patterns from passively-generated mobile phone data. Transportation Research Part C: Emerging Technologies 87, 58-74, doi: https://doi.org/10.1016/j.trc.2017.12.003.
[40]Williams, Billy M., and Lester A. Hoel, 2003. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. Journal of Transportation Engineering 129(6), 664, doi:
https://doi.org/10.1061/(ASCE)0733-947X(2003)129:6(664).
[41]Wu, Luo-Yu, 2020. Preprocessing of mobile phone signal data for vehicle mode identification using map-matching technique. Master’s Thesis, National Central University, Taiwain.
[42]Xu, Chengcheng, Junyi Ji, and Pan Liu, 2018. The station-free sharing bike demand forecasting with a deep learning approach and large-scale datasets. Transportation Research Part C: Emerging Technologies 95, 47-60, doi:
https://doi.org/10.1016/j.trc.2018.07.013.
[43]Zhao, Zheng, Weihai Chen, Xingming Wu, Peter C. Y. Chen, and Jingmeng Liu, 2017. LSTM network: a deep learning approach for short-term traffic forecast. IET Intelligent Transport Systems 11(2), 68-75, doi: https://doi.org/10.1049/iet-its.2016.0208.
[44]Zhou, Feng, and Rui-hua Xu, 2012. Model of passenger flow assignment m for urban rail transit based on entry and exit time constraints. Transportation Research Record: Journal of the Transportation Research Board 2284(1), 57-61, doi:
https://doi.org/10.3141/2284-07. |