博碩士論文 109324059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.224.53.73
姓名 洪英倫(Ying-Lun Hung)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Enantiomeric Resolution of Racemic Ibuprofen by Diastereomeric Crystallization through Solvent Selection)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 手性在製藥產業中尤其重要,特別在設計活性藥物分子時。當中心碳原子(手性中心)連接到四個不同的基團時,此分子中將存在手性。 其中,鏡像異構體間有著相同的物理化學性質,卻在生物體中表達出不同的生物活性與光學性。 若忽視對掌性,將會帶給我們無法挽回的悲劇,例如: 沙利度胺悲劇,此悲劇導致數百名新生兒罹患先天性殘缺。 現今,許多的手性拆分技術已發展成熟,例如: 通過使用拆分劑形成非鏡像異構鹽類。 消旋布洛芬((R/S)-(±)-ibuprofen, (R/S)- (±)-IBU),是一種的非類固醇抗發炎藥(NASID),其中,右旋布洛芬((S)-(+)-ibuprofen, (S)-IBU) 是用於緩解疼痛的主要活性成分。因此,在本研究中,右旋布洛芬從消旋布洛芬中拆分回收。 此外,本研究選擇左旋甲基苯胺((S)-α-MBA)作為拆分劑,來形成(S)-(+)-ibuprofen-(S)-(-)-α-MBA ((S)-IBU-(S)-α-MBA)),和 (R)-(-)- ibuprofen-(S)-(-)-α-MBA ((R)-IBU-(S) -α-MBA))之非鏡像異構鹽類。 (S)-IBU-(S)-α-MBA之非鏡像異構鹽,會在此部分選擇性沉澱,稱為第一次純化的(S)-IBU-(S)-α-MBA非鏡像異構鹽。結果表明,當此三者的摩爾比 (R/S)-IBU: (S)-α-MBA: KOH 為 2:1:1 時,形成的非鏡像異構鹽會產生最高的回收率(Re%)為21%。也就是說,在此莫爾比下合成,第一次純化的(S)-IBU-(S)-α-MBA非鏡像異構鹽含有最大量的(S)-IBU。 (2) 根據初始溶劑篩选,選擇7個溶劑: 丙酮、甲醇、乙醇、異丙醇、乙酸乙脂、1-丁醇、苯甲醇來對第一步驟得到的鹽類進行再結晶純化,隨後,選擇乙酸乙酯做為再結晶溶劑是因為它從 70°C 冷卻至 25°C 之後會得到最大量的(S)-IBU-(S)-α-MBA非鏡像異構鹽,並且此溶劑可以重複使用。經此次在結晶純化後此鹽類稱為第二次純化的(S)-IBU-(S)-α-MBA非鏡像異構鹽。(3)將第二次純化的(S)-IBU-(S)-α-MBA非鏡像異構鹽溶解在甲醇中,加入硫酸來還原拆分後的右旋布洛芬。 (4) 優化反溶劑添加法的參數來回收且達到高產率的右旋布洛芬。最後,將回收製程成功擴大到18 g以檢視其再現性,並回收使用乙酸乙酯。結果顯示,提純且回收後的右旋布洛芬的總產率為60-69%,對應純度為74-79 %ee 的(S)-IBU。 此研究也成功針對兩種布洛芬非鏡像異構鹽類進行傅立葉轉換紅外光譜(FTIR)與X光繞射分析(XRD),進行熱微差掃描分析儀(DSC)等固態鑑定。最後,與其他使用非鏡像鹽類結晶法的文獻來進行比較,我們的方法具有更高的純度和產率以及製程可放大性等優勢。
摘要(英) Chirality is an important subject issue in the pharmaceutical industry when designing the small molecules of active pharmaceutical ingredients. Chirality would exist in the molecule when a central carbon atom (chiral center) is attached to four different groups. Among them, enantiomers have identical physico-chemical properties but different in bioactivity and optical property. Ignoring the issue of drug chirality will cause an irreversible tragedy, for example, thalidomide tragedy, caused hundreds of newborn babies with inborn errors. Nowadays, several enantiomeric (chiral) resolution techniques have been developed, for example, diastereomeric salt formation by using an optically resolving agent. (R/S)-(±)-ibuprofen ((R/S)-IBU) is a nonsteroidal anti-inflammatory drug (NASID), in which (S)-(+)-ibuprofen ((S)-IBU) is the main active ingredient for pain relief instead of (R)-(-)-ibuprofen ((R)-IBU). Thus, (S)-IBU would be recovered from (R/S)-IBU in this study. Furthermore, (S)-(-)-α-Methylbenzylamine ((S)-α-MBA) was chosen as the resolving agent to form (S)-(+)-ibuprofen-(S)-(-)-α-MBA ((S)-IBU-(S)-α-MBA)),and (R)-(-)-ibuprofen-(S)-(-)-α-MBA ((R)-IBU-(S)-α-MBA)) diastereomeric salts. The aim of this research is to performed the chiral resolution by diastereomeric crystallization through solvent selection which was divided into four parts: (1) different reaction stoichiometry ratios of the resolving agent ((S)-(-)-α-MBA) and optically inactive base (potassium hydroxide, KOH(aq)) were investigated in the first part to form diastereomeric salts of (S)-IBU-(S)-α-MBA and (R)-IBU-(S)-α-MBA. The diastereomeric salt of (S)-IBU-(S)-α-MBA would selectively precipitated in the first part, called the first enriched diastereomeric salt in (S)-IBU-(S)-α-MBA. The results showed that the diastereomeric salt formation of (R/S)-IBU with a molar ratio of (R/S)-IBU: (S)-α-MBA: KOH of 2:1:1 would give the highest recovery percentage (Re%) of 21%. That is to say, the first enriched diastereomeric salts with above molar ratio would produce the largest amount of (S)-IBU. (2) Cooling recrystallization of diastereomeric salts based on initial solvent screening and solvent selection in seven solvents, including, acetone (ACE), methanol (MeOH), ethanol (EtOH), isopropyl alcohol (IPA), ethyl acetate (EA), n-butyl alcohol, and benzyl alcohol. Subsequently, ethyl acetate was selected because it gave the largest amount of enriched (S)-IBU-(S)-α-MBA after cooling from 70°C to 25°C and the solvent could be reused. The solids harvested from cooling recrystallization were called the second enriched diastereomeric salts in (S)-IBU-(S)-α-MBA. (3) the second enriched diastereomeric salts were dissolved in methanol and cracked by sulfuric acid. (4) optimization of the operating parameters for antisolvent crystallization to recover the enriched (S)-IBU was conducted. Finally, the recovery process was successfully scaled up to 18 g to exam the reproducibility, and recycle of the ethyl acetate, and the process resulted in 69-60% overall yield and 79-74%ee of the enriched (S)-IBU. All solids were analyzed by HPLC to determine the diastereomeric excess and the enantiomeric excess, and all solids were characterized by Fourier transform infrared spectrometer (FTIR) and powder X-ray diffractometer (PXRD) and differential scanning calorimetry (DSC). Our results were also compared with the ones of others groups doing diastereomeric crystallization. Our method offers the advantages of higher purity and yield, and process scalability.
關鍵字(中) ★ 手性拆分
★ 消旋布洛芬
★ 非對映結晶
★ 溶劑
關鍵字(英) ★ Enantiomeric Resolution
★ Racemic Ibuprofen
★ Diastereomeric Crystallization
★ Solvent
論文目次 摘要 i
Abstract iii
Acknowledgement v
Table of Contents vi
List of Figures ix
List of Tables xiv
Chapter 1 Introduction 1
1.1 Isomers 1
1.2 Chirality 4
1.2.1 Brief Introduction of Chirality 4
1.2.2 The Importance of Chirality 4
1.2.3 Categories of a Racemic Mixture 5
1.2.4 (R/S)-ibuprofen 8
1.3 Asymmetric Synthesis 10
1.4 Chiral Resolution 10
1.4.1 Chromatographic Resolution 10
1.4.2 Kinetic Resolution 11
1.4.3 Preferential Crystallization 11
1.4.4 Diastereomeric Crystallization 11
1.4.5 Other Chiral Resolution Methods 12
1.5 Chiral Resolution of (R/S)-IBU 13
1.6 Conceptual Framework 14
Chapter 2 Experimental Materials and Methods 16
2.1 Materials 16
2.1.1 Chemicals 16
2.1.2 Solvents 17
2.2 Experimental Framework 19
2.2.1 Experimental Design 19
2.3 Diastereomeric Crystallization 22
2.3.1 Reaction Stoichiometry Determination 22
2.4 Solvent Screening and Selection for Cooling Recrystallization of Diastereomeric Salt 24
2.4.1 Initial Solvent Screening 24
2.4.2 Solubility Curves of (R/S)-IBU, the First Enriched Diastereomeric Salts in (S)-IBU-(S)-α-MBA and the Pure (S)-IBU-(S)-α-MBA 26
2.4.3 Cooling Recrystallization of Diastereomeric Salts 28
2.5 Recovery of (S)-Ibuprofen by Anti-Solvent Addition 30
2.5.1 Effect of Solvent Ratio 30
2.5.2 Effect of Aging Time 31
2.6 Recovery Process Scale Up 32
2.6.1 Effect of Antisolvent Addition Rate 32
2.6.2 Scale-up of the Recovery of Enriched (S)-IBU 33
2.7 Analytical Instruments 36
2.7.1 Fourier Transform Infrared Spectrometer (FTIR) 36
2.7.2 Differential Scanning Calorimeter (DSC) 38
2.7.3 Powder X-ray Diffractometer (PXRD) 39
2.7.4 High Performance Liquid Chromatographic analyzer (HPLC) 41
Chapter 3 Results and Discussion 43
3.1 Introduction 43
3.1.1 Use Test of (R/S)-(±)-Ibuprofen, (R/S)-IBU 43
3.1.1.1 FTIR Spectrum and PXRD Pattern 43
3.1.1.2 DSC Scan 44
3.1.2 The Establishment of HPLC Calibration Line 45
3.2 Diastereomeric Crystallization 49
3.2.1 Stoichiometry Determination of Diastereomeric Crystallization 49
3.3 Recrystallization of Diastereomeric Salts by Cooling 56
3.3.1 Solubility Test 56
3.3.1.1 Solubility Test by Gravimetric Method 56
3.3.2 Effects of Solvent and Cooling Temperature Range 61
3.4 Recovery of Enriched (S)-IBU Diastereomeric Salt 66
3.4.1 Effect of Solvent Ratio 66
3.4.2 Effect of Aging Time 69
3.5 Recovery Process Scale Up 71
3.5.1 Effect of Antisolvent Addition Rate 71
3.5.2 Recovery Scale-up of Enriched (S)-IBU 73
3.5.3 Comparison of Diastereomeric Crystallization Performance of (R/S)-IBU in Literature 80
Chapter 4 Conclusions and Future Works 81
4.1 Conclusions 81
4.2 Future Works 81
References 82
參考文獻 1. Naming Stereoisomers
(https://courses.lumenlearning.com/suny-potsdam-organicchemistry/chapter/4-3-naming-stereoisomers/, accessed June 5, 2022)
2. Molecules with Multiple Chiral Centers
(https://courses.lumenlearning.com/suny-potsdam-organicchemistry/chapter/4-4-molecules-with-multiple-chiral-centers/, accessed June 5 , 2022)
3. Devínsky, F. Chirality and the Origin of Life. Symmetry. 2021, 13(22), 2277.
4. Watford, M.; Wu, G. Protein. Adv. Nutr. 2018, 9(5), 651-653.
5. Lopez, M.J.; Mohiuddin, S.S. Biochemistry, Essential Amino Acids. In: StatPearls [Internet]. Treasure Island (FL): StatPearls. 2022. (accessed June 5, 2022)
6. Inaki, M.; Liu, J.; Matsuno, K. Cell Chirality: Its Origin and Roles in Left–Right Asymmetric Development. Philos. Trans. R. Soc. B. 2016, 371(1710).
7. Bastings, JJA.J.; Van Eijk, H.M.; Olde Damink, S.W.; Rensen, SS. D-amino Acids in Health and Disease: A Focus on Cancer. Nutrients. 2019, 11(9), 2205.
8. Avnir, D. Critical Review of Chirality Indicators of Extraterrestrial Life. New Astron. Rev. 2021, 92, 101596.
9. Brooks, WH.; Guida, WC.; Daniel, KG. The Significance of Chirality in Drug Design and Development. Curr. Top. Med. Chem. 2011, 11(7), 760-770.
10. What Is an Active Pharmaceutical Ingredient (API)?
(https://www.verywellhealth.com/api-active-pharmaceutical-ingredient-2663020, accessed on June 2, 2022)
11. Sixty Years on: The History of the Thalidomide Tragedy.
(https://www.understandinganimalresearch.org.uk/news/sixty-years-on-the-history-of-the-thalidomide-tragedy, accessed on June 2, 2022)
12. Martínez-Frías, M.L. The Thalidomide Experience: Review of Its Effects 50 Years Later. Med. Clin. 2012, 139(1), 25-32. 13. Lenz W: The History of Thalidomide. Extract from a Lecture Given at the 1992 UNITH Congress (https://www.thalidomide.ca/wp-content/uploads/2017/12/Dr-Lenz-history-of-thalidomide-1992.pdf , accessed on June 2, 2022)
14. Nippert, I.; Edler, B.; Schmidt-Herterich, C. 40 Years Later: The Health Related Quality of Life of Women Affected by Thalidomide. Community Genet. 2002, 5(4), 209-16.
15. Molecule of the Week Archive, Thalidomide.
(https://www.acs.org/content/acs/en/molecule-of-the-week/archive/t/thalidomide.html, accessed on June 2, 2022)
16. Blaschke, G.; Kraft, H.P.; Fickentscher, K.; Kohler, F. Chromatographic Separation of Racemic Thalidomide and Teratogenic Activity of its Enantiomers. Arzneim-Forsch. 1979, 29(10), 1640-1642.
17. Frances Oldham Kelsey: FDA Medical Reviewer Leaves Her Mark on History.
(https://permanent.access.gpo.gov/lps1609/www.fda.gov/fdac/features/2001/201_kelsey.html, accessed on June 2, 2022)
18. Sögütoglu, LC.; Steendam, R.R.; Meekes, H.; Vlieg, E.; Rutjes, F.P. Viedma Ripening: a Reliable Crystallisation Method to Reach Single Chirality. Chem. Soc. Rev. 2015, 44(19), 6723-32.
19. Cascella, F.; Seidel-Morgenstern, A.; Lorenz, H. Exploiting Ternary Solubility Phase Diagrams for Resolution of Enantiomers: An Instructive Example. Chem. Eng. Technol. 2020, 43(2), 329–336.
20. Rekis, T.; Bērziņš, A.; Orola, L.; Holczbauer, T.; Actiņš, A.; Seidel-Morgenstern, A.; LorenzSingle, H. Single enantiomer’s urge to crystallize in centrosymmetric space groups: solid solutions of phenylpiracetam. Cryst. Growth Des. 2017, 17(3), 1411-1418.
21. Bredikhin, A.A.; Bredikhina, Z.A.; Zakharychev, D.V.; Konoshenko, L.V. Spontaneous Resolution among Chiral Glycerol Derivatives: Crystallization Features of Ortho-alkoxysubstituted Phenyl Glycerol Ethers. Tetrahedron Asymmetry. 2007, 18(16), 1964–1970.
22. Leising, G.; Resel, R.; Stelzer, F.; Tasch, S.; Lanziner, A.; Hantich, G. Physical Aspects of Dexibuprofen and Racemic Ibuprofen. J. Clin. Pharmacol. 1996, 36(12), 3-6.
23. Dwivedi, S.K. Ibuprofen Racemate and Enantiomers: Phase Diagram, Solubility and Thermodynamic Studies. Int. J. Pharm. 1992. 87(1), 95-104.
24. Evans, A.M. Comparative Pharmacology of S-(+)-Ibuprofen and (RS)-Ibuprofen. Clin. Rheumatol. 2001, 20(1), 9-14.
25. Zheng, C.; Hao, H.; Wang, G.; Sang, G.; Sun, J.; Li, P.; Li, J. Chiral Separation of Ibuprofen and Chiral Pharmacokinetics in Healthy Chinese Volunteers. Eur. J. Drug. Metab. Pharmacokinet. 2008, 33(1), 45-51.
26. Agranat, I.I.; Caner, H. Intellectual Property and Chirality of Drugs. Drug. Discov. Today. 1999, 4(7), 313-321.
27. Gawroński J. Asymmetric Syntheses and Transformations--Tools for Chirality Multiplication in Drug Synthesis. Acta Pol Pharm. 2006, 63(5), 333-51.
28. Madduri, A.V.; Harutyunyan, S.R.; Minnaard, A.J. Catalytic Asymmetric Alkylation of Ketones using Organometallic Reagents. Drug Discov Today Technol. 2013, 10(1), 21-7.
29. Eidamshaus, C.; Reissig H.U. A Chiral Pool Strategy for the Synthesis of Enantiopure Hydroxymethyl-Substituted Pyridine Derivatives. Eur. J. Org. Chem. 2011, 6056–6069.
30. Ötvös, S.B.; Kappe, O. Continuous Flow Asymmetric Synthesis of Chiral Active Pharmaceutical Ingredients and Their Advanced Intermediates. Green Chem. 2021, 23, 6117–6138.
31. Nobel Prize Recognizes Development of Asymmetric Organic Catalysis (https://www.asbmb.org/asbmb-today/people/100621/2021-nobel-in-chemistry, accessed June 2, 2022)
32. Grybinik S.; Bosakova, Z. An Overview of Chiral Separations of Pharmaceutically Active Substances by HPLC (2018-2020). Monatsh Chem. 2021, 152(9), 1033-1043.
33. Lee, J.H.; Ryoo, J.J. The Influence of Temperature, Ultrasonication and Chiral Mobile Phase Additives on Chiral Separation: Predominant Influence of β-Cyclodextrin Chiral Mobile Phase Additive Under Ultrasonic Irradiation. Bull. Korean Chem. Soc. 2012, 33(12), 4141-4144.
34. Cavazzini, A.; Pasti, L.; Massi, A.; Marchetti, N.; Dondi, F. Recent Applications in Chiral High Performance Liquid Chromatography: A Review. Anal. Chim. Acta. 2011, 706(2), 205-22.
35. Toyo′oka, T. Resolution of Chiral Drugs by Liquid Chromatography Based Upon Diastereomer Formation with Chiral Derivatization Reagents. J. Biochem. Biophys. Methods. 2002, 54(1-3), 25-56.
36. Haider V, Zebrowski P, Michalke J, Monkowius U, Waser M. Enantioselective Organocatalytic Syntheses of α-selenated α- and β-amino acid Derivatives. Org. Biomol. Chem. 2022, 20(4), 824-830.
37. Sikora, A.; Siódmiak, T.; Marszałł, M.P.; Kinetic Resolution of Profens by Enantioselective Esterification Catalyzed by Candida Antarctica and Candida Rugosa Lipases. Chirality. 2014, 26(10), 663-9.
38. Fazlena, H.; Kamaruddin, A.H; Zulkali, M.M. Dynamic Kinetic Resolution: Alternative Approach in Optimizing S-Ibuprofen Production. Bioprocess Biosyst Eng. 2006, 28(4), 227-33.
39. Lee, H.; Kim, D.; Kim, S.; Lee, H.S. Conversion of Racemic Unnatural Amino Acids to Optically Pure Forms by a Coupled Enzymatic Reaction. Molecules. 2021, 26(5), 1274.
40.Toledo, M.V.; Llerena, S.; C.R.; Ruscitti, C. et al. Influence of Water on Enzymatic Esterification of Racemic Ketoprofen with Ethanol in a Solvent-Free System. Top Catal. 2019, 62, 968–976.
41. Straub, M.R.; Birman, V.B. Organocatalytic Kinetic Resolution of N-Boc-Isoxazolidine-5-ones. Org Lett. 2021, 23(3), 984-988.
42. Coquerel G. Preferential Crystallization. Top. Curr. Chem. 2007, 269, 1-51.
43. Harfouche, L. C.; Brandel, C.; Cartigny, Y.; Ter Horst, J. H.; Coquerel, G.; Petit, S. Enabling Direct Preferential Crystallization in a Stable Racemic Compound System. Mol. Pharmaceutics. 2019, 16, 4670– 4676.
44. Sun, J.; Wang, Y.; Gao, Z.; Gong, J.; Tang, W. Additive-Assisted Preferential Crystallization of Racemic Component: A Case of Norvaline. J. Ind. Eng. Chem. 2022, 110, 206-216.
45. Coquerel, G.; Hoquante, M. Spontaneous and Controlled Macroscopic Chiral Symmetry Breaking by Means of Crystallization. Symmetry. 2020, 12(11), 1796.
46. Brands K.M., Davies A.J. Crystallization-Induced Diastereomer Transformations. Chem. Rev. 2006, 106(7), 2711-33.
47. Mousaw, P.; Saranteas, K.; Prytko, B. Crystallization Improvements of a Diastereomeric Kinetic Resolution through Understanding of Secondary Nucleation. Org. Process Res. Dev. 2008, 12(2), 243–248.
48. Mart´ın, A.; Cocero, M.J. Separation of Enantiomers by Diastereomeric Salt Formation and Precipitation in Supercritical Carbon Dioxide Application to the Resolution of Mandelic Acid. J. Supercrit. Fluids. 2007, 40, 67–73.
49. Vaidya, N.A. Diastereomeric Crystallisation - the “Classical” Chiral Technology. Indian J. Chem. Technol. 82-85.
50. Higgins, C.J.; Duranceau, S.J. Removal of Enantiomeric Ibupriofen in a Nanofiltration Membrane Process. Membranes (Basel). 2020, 10(12), 383.
51. Shiau, L.D.; Liu, K.F.; Hsu, Y.C. Chiral Purification of S-Ibuprofen from Ibuprofen Enantiomers by Stripping Crystallization. Chem Eng Res Des. 2017, 117, 301–308.
52. Jos, C.; Briand, L.E.; Michlig, N.; Repetti, M.R.; Benedetich, C.; Laura, M.; Cornaglia, M. Bosko, L. Isolation of Ibuprofen Enantiomers and Racemic Esters through Electrodialysis. J. Membr. Sci. 2021, 618, 118714.
53. Navarro-Sánchez, J.; Argente-García, A.I.; Moliner-Martínez, Y.; Roca-Sanjuán, D.; Antypov, D.; Campíns-Falcó, P.; Rosseinsky, M.J.; Martí-Gastaldo, C. Peptide Metal-Organic Frameworks for Enantioselective Separation of Chiral Drugs. J. Am. Chem. Soc. 2017, 139(12), 4294-4297.
54. Ammazzalorso, A.; Amoroso, R.; Bettoni, G.; Filippis, B.D.; Giampietro, L.; Pierinib, B.; Triccaa, M.L. Asymmetric Synthesis of (S)-Ibuprofen by Esterification with Amides of (S)-lactic Acid as Chiral Auxiliaries: Experimental and Theoretical Results. Tetrahedron Lett. 2022, 43(24), 4325-4328.
55. Bhushan R, Martens J. Resolution of Enantiomers of Ibuprofen by Liquid Chromatography: a Review. Biomed Chromatogr. 1998, 12(6), 309-16.
56. Marc, L.; Guillemer, S.; Schneider, JM.; Coquerel, G. Continuous Chiral Resolution of Racemic Ibuprofen by Diastereomeric Salt Formation in a Couette-Taylor Crystallizer. Chem. Eng. Res. Des. 2022, 178, 95-110.
57. McCullagh, JV. The Resolution of Ibuprofen, 2-(4′-Isobutylphenyl)propionic Acid. J. Chem. Educ. 2008, 85(7), 941-943.
58. Zhao, Y.; Zhu, X.; Jiang, W.; Liu, H.; Sun, B. Chiral Recognition for Chromatography and Membrane-Based Separations: Recent Developments and Future Prospects. Molecules. 2021, 26(4), 1145.
59. Fishman, A.; Eroshov, M.; Dee-Noor, S.S.; van Mil, J.; Cogan, U. Effenberger, R. A Two-Step Enzymatic Resolution Process for Large-Scale Production of (S)- and (R)-ethyl-3-hydroxybutyrate. Biotechnol. Bioeng. 2001, 74(3), 256-63.
60. Lam, W.H.; Ng, K.M. Diastereomeric Salt Crystallization Synthesis for Chiral Resolution of Ibuprofen. AlChE. J. 2007, 53(2), 429-437.
61. Bhattacharya, A. Temperature Selective Diastereo-Recognition (TSD): Enantiomeric Ibuprofen via Environmentally Benign Selective Crystallization. Org. Process Res. Dev. 2003, 7(5), 717-722.
62. Manimaran, T.; Impastato, F. Preparation of Optically Active Aliphatic Carboxylic Acids. US 5015764A. 1990. (accessed May 3, 2022).
63. Lee, T.; Kuo, C.S.; Chen, Y.H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen. Pharm. Technol. 2006, 30(10), 72-92.
64. ICH Guideline Q3C (R6) on Impurities: Guideline for Residual Solvents. European Medicines Agency, Science Medicines Health, 2017. (accessed May 3, 2022).
65. 施正雄. Principles and Applications of Instrumental Analysis; 五南圖書, 2018. (accessed February 15, 2022)
66. Dudley, M.; Huang, X. X-ray Topography. Elsevier Sci. 2001, 13-25
67. X-Ray Diffraction
(https://www.bragitoff.com/2017/08/faq-x-ray-diffraction-viva-questions/, accessed May 3, 2022)
68. Ibuprofen on Lux 5µm Cellulose-3 in RP
(https://www.phenomenex.com/Application/Detail/20310, accessed May 3, 2022)
69. Corvis, Y.; Guiblin, N.; Négrier, P.; Marenco, I.; Dembélé, O.; Espeau, P. Scalemic Mixtures Preparation for Optimized Composition of Ibuprofen Solid Dosage Forms. Eur. J. Pharm. Biopharm. 2021, 169, 91-96.
70. W.J. Pope.; S.J. Peachey. The Application of Powerful Optically Active Acids to the Resolution of Externally Compensated Basic Substances. Resolution of Tetrahydroquinaldine, J. Chem. Soc. Trans. 1899, 75, 1066–1093.
71. Kozma, D. Study of the Mechanism of Optical Resolutions via Diastereomeric Salt Formation. J. Therm. Anal. 1996, 47, 727-733.
72. Kozma, D. Study of the Mechanism of the Optical Resolution of Nmethylamphetamine via Diastereoisomeric Salt Formation by the Pope-Peachey Method. Tetrahedron: Asymmetry. 1994, 5(2), 195-194.
73. W.J. Pope.; S.J. Peachey. The Non-Resolution of Racemic Tetrahydropapaverine by Tartaric Acid, J. Chem. Soc. Trans. 1898, 73, 902-905.
74. Lee, T.; Wang, Y. W. Initial Salt Screening Procedures for Manufacturing Ibuprofen. Drug Dev. Ind. Pharm. 2009, 35(5), 555-567.
75. Savjani, KT.; Gajjar. AK.; Savjani JK. Drug Solubility Importance and Enhancement Techniques. ISRN Pharm. 2012, 2012, 1-10.
76. Marc, L.; Lopes, C.; Schneider, JM.; Sanselme, M.; Coquerel, G. Impact of a Partial Solid Solution and Water Molecules on the Formation of Fibrous Crystals and Fluid Inclusions. Crystals 2021, 11(10), 1188,1-13.
77. Alpana A. Thorat.; Sameer V. Dalvi. Liquid Antisolvent Precipitation and Stabilization of Nanoparticles of Poorly Water. Chem. Eng. J. 2012, 181-182, 1-34.
78. Minamisono, T. Control of Polymorphism in the Anti-Solvent Crystallization with a Particular Temperature Profile. J. Cryst. Growth 2013, 362(1), 135-139.
79. Jia, S. Recent Progress in Antisolvent Crystallization. CrystEngComm 2022, 24, 3122-3135.
80. Lin, W.H.; Yu, Z.-Q.; Chow, P.S.; Tan, R.B.H. The Crystallization of Active Pharmaceutical Ingredients with Low Melting Points in the Presence of Liquid–Liquid Phase Separation. Crystals 2021, 11(11), 1326.
81. Yu, Z.Q.; Zhang, F.K.; Tan, R.B.H. Liquid–Liquid Phase Separation in Pharmaceutical Crystallization. Chem. Eng. Res. Des. 2021, 174(23), 19–29.
82. Yan, Z.M.; Cheng, H.S; Wang, J. Investigation of Oiling-Out Phenomenon of Small Organic Molecules in Crystallization Processes: A Review. ChemistrySelect 2020, 5(26), 7855-7866.
83. Xu, S.; Zhang, H.; Qiao, B.; Wang, Y. Review of Liquid–Liquid Phase Separation in Crystallization: From Fundamentals to Application. Cryst. Growth Des. 2021, 21(12), 7306-7325.
指導教授 李度(Tu Lee) 審核日期 2022-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明