博碩士論文 86344002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:91 、訪客IP:18.117.162.107
姓名 黃富鑫(Fuh-Hsin Hwang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 衰弱通道下差調及同調相位鍵移調變的天線分集轉換
(Antenna Diversity Transforms for Differentially Coherent and Coherent PSK Modulations over Fading Channels)
相關論文
★ 多載波調變訊號之接收系統設計規劃及實現、訊號偵測與頻率估測★ 多重脈波重複週期訊號與頻擾雷達之頻率訊號的辨識效能評估
★ 多載波調變訊號之時間評估與檢測解調系統設計★ 正交多工正交相位調變在相加性白高斯雜訊通道下之次佳化同調與差分同調之解調
★ 頻擾雷達訊號與巴可碼雷達訊號的辨識效能評估★ 分集碼相移鍵調變在相加性白高斯雜訊通道
★ 正交多工正交振幅調變訊號之峰均功率比研究★ 正交多工正交振幅調變在相加性白高斯雜訊通道下之次佳化同調之解調
★ 正交多工正交相位調變之錯誤更正研究★ 使用慢速跳頻及差分相移鍵調變在部分頻帶雜訊干擾之相關性瑞雷衰落通道下的分集碼設計及效能
★ 在相關性瑞雷衰落通道下使用差分相移鍵調變之分集碼的再設計與討論★ L個相角之頻率/相位調變
★ 正交多工正交振幅調變在非線性放大狀況下之互調變效應研究★ 編碼平行組合正交分頻多工系統
★ 差分同調MPSK調變訊號之區塊編碼方法在加成性白色高斯雜訊通道★ 使用差異性錯誤保護架構之正交多工調變訊號
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要探討傳送天線分集架構的三種實現方法,這些方法適用於非頻擇性的衰弱通道,所考慮的天線分集轉換不需要估測通道狀態。在第一種方法中,發射端由一個我們提出的非線性轉換器、NT 分支的差異相位鍵移(N-DPSK)調變器、傳送天線與正交波形修整器所構成。針對N-DPSK調變,我們同時考慮不具多餘符元及具多餘符元的非線性轉換。在第二種方法中,我們使用決策回饋差異相位偵測(DF-DD)來取代第一種方法中傳統的差異相位偵測(2DD),以改善前者在快速衰弱通道下錯誤性能的衰退。在第三種方法,我們重新探討前面所提出的分集架構,改用同調的相位鍵移調變(N-PSK)來傳輸,同時在接收端加入多重天線及最大比例組合器(maximal ratio combiner; MRC) 進一步增進錯誤性能。論文中我們同時對N-PSK及N-DPSK,設計兩種非線性的分集轉換,包括:「直接方塊轉換」(direct block transform)及「循環轉換」(cyclic transform)。這兩種轉換機制會使轉換後的信號區塊具有本質性的空間分集增益,以對抗快速衰弱的通道效應。針對差異同調或同調傳輸,我們提出最大可能性決策接收器來將接收到的信號區塊逐個偵測。文中並推導出各系統之方塊錯誤率(block error probability; BEP)的聯集上界,來評估其錯誤性能。經由推導的聯集上界或切斷率(cutoff rate)的近似式,定義簡單的轉換優勢指數(transform merit figure; TMF)來加速轉換的搜尋。結果顯示,「循環轉換」具有與「直接方塊轉換」相當或較優的錯誤性能,且能大量增加搜尋效率。
根據數值與電腦模擬結果,與現存的相關系統比較,我們提出的系統,在斟酌個別的因素下(如:錯誤性能、傳輸率、偵測延遲、衰弱頻寬等),具有相當或較優的表現。
摘要(英) In this thesis, we consider two approaches of antenna diversity transforms, which operate on the frequency-nonselective fading channels without the knowledge of channel state information. The diversity transforms are designed for three antenna diversity schemes. For the first one, the proposed transmitter consists of a nonlinear block transformer and N_T branches of differential phase modulators, orthogonal pulse shapers and transmit antennas. Both redundancy-free and extended constellations for $N$-DPSK signaling formats are taken into account. Based on the first scheme, the second is proposed to enhance the error performance by using decision feedback differential detection at the receiver. Instead of N-DPSK, in the third scheme we consider coherent N-PSK for the previous diversity system combined with maximal ratio combining at the receiver. In this thesis, two nonlinear transform approaches including the direct block transform and cyclic transform are presented. The resultant signaling mechanism merits intrinsic spatial diversity within each transmitted block, which is resistant to rapid channel fading. The maximum-likelihood receivers are developed to detect the received diversity signal block by block. The expressions of the union bound are derived to assess the block error probability (BEP) characteristics of the proposed diversity schemes. Use the derived approximation of the BEP bounds or cutoff rate expression to define the transform merit figures for searching good transforms. It is analytically shown that the diversity systems employing the searched short-blocklength transforms can offer comparable or enhanced error performance to those existing blind transmit schemes when the trade-offs of decision delay, transmission rate and fading bandwidth are considered.
關鍵字(中) ★ 衰弱通道
★ 相位鍵移調變
★ 天線分集
★ 分集轉換
關鍵字(英) ★ fading channels
★ PSK modulation
★ antenna diversity
★ diversity transform
論文目次 Chapter 1 Introduction 7 1.1 Thesis Background......7
1.2 Historical Review on Antenna Diversity Schemes.....9
1.3 Thesis Motivations.....13
1.4 Chapter Outline .....15
Chapter 2 Direct Block Diversity Transform for N-DPSK.....17
2.1 Introduction .....17
2.2 System Model.....18
2.3 ML Decision Rule and Error Analysis.....23
2.3.1 ML Decision Rule .....23
2.3.2 Block Error Probability Bounds.....24
2.4 Direct Block Transforms.....25
2.5 Analytic and Simulation Results .....29
2.6 Extended Block Transforms .....37
2.7 Chapter Conclusion .....40
Chapter 3 Cyclic Diversity Transform for N-DPSK with DF-DD..... 42
3.1 Introduction .....42
3.2 System Model .....43
3.3 Decision Rule and Error Analysis .....48
3.3.1 Decision Rule .....48
3.3.2 Block Error Probability Bounds.....49
3.4 Cyclic Diversity Transforms .....51
3.5 Transform Search and Numerical Results.....52
3.6 Chapter Conclusion .....63
Chapter 4 Cyclic Diversity Transform for N-PSK with Diversity Reception.....64
4.1 Introduction .....64
4.2 System Model .....67
4.3 Cutoff Rate and Transform Search.....72
4.3.1 Cutoff Rate for the Diversity Scheme .....72
4.3.2 Transform Search .....75
4.4 Error Analysis and Numerical Results.....77
4.4.1 Error Analysis .....77
4.4.2 Numerical Results .....78
4.5 Chapter Conclusion .....81
Chapter 5 Conclusion.....89
Appendix.....100
參考文獻 [1] J. G. Proakis, Digital Communications, 3rd ed. New York: McGraw-Hill, 1995.
[2] Y. E. Dallal and S Shamai, "Time diversity in DPSK noisy phase channels," IEEE Trans. Commun., vol. 40, pp. 1703 -1715, Nov 1992.
[3] A. A. Ali, "Optimum time diversity for channels subject to pulse-burst interference," Proc. IEE Commun., vol. 143, pp. 43-46, Feb. 1996.
[4] M. A. Lagunas, A. I. P. N., M. G. Amin and J Vidal, "Spatial processing for frequency diversity schemes," , IEEE Trans. Signal Processing, vol. 48, pp. 353 -362, Feb 2000.
[5] M. Chiani, et al., "Frequency and interference diversity in slow frequency hopping multiple access systems," in Proc. 7th IEEE PIMRC, Taipei, Taiwan, Oct. 1996, pp. 648-652.
[6] P. Y. Kam, "Bit error probabilities of MDPSK over the nonselective Rayleigh fading channel with diversity reception," IEEE Trans. Commun., vol. 39, pp. 220-224, Feb. 1991.
[7] V.-P. Kaasila and A. Mammela, "Bit-error probability for an adaptive diversity receiver in a Rayleigh-fading channel," IEEE Trans. Commun., vol. 46, pp. 11061108, Sept. 1998.
[8] V. Tarokh and T. K. Y. Lo, "Principal ratio combining for fixed wireless applications when transmitter diversity is employed," IEEE Commun. Lett., vol. 2, pp. 223-225, Aug. 1998.
[9] W. Y. Kuo and M. P. Fitz, "Design and analysis of transmitter diversity using intentional frequency offset for wireless communications," IEEE Trans. Veh. Technol., vol. 46, pp. 871-881, Nov. 1997.
[10] D. Divsalar and M. K. Simon, "The design of trellis coded MPSK for fading channels: Performance criteria and set partitioning for optimum code design," IEEE Trans. Commun., vol. 36, pp. 1004-1022, Sept. 1988.
[11] L. F. Wei, "Coded M-DPSK with built-in time diversity for fading channels," IEEE Trans. Inform. Theory, vol. 39, pp. 1820-1839, Nov. 1993.
[12] H. Y. Chung and S. G. Wilson, "Multimode modulation and coding of QAM ," IEEE Trans. Commun., vol. 41, pp. 1-6, Jan 1993.
[13] A. Stefanov and T.M. Duman, "Performance bounds for turbo-coded multiple antenna systems," IEEE J. Select. Areas Commun., vol. 21, pp. 374 -381, Apr 2003.
[14] D. Rainish, "Diversity transform for fading channels," IEEE Trans. Commun., vol. 44, pp. 1653-1661, Dec. 1996.
[15] J. Bourtros and E. Viterbo, "Signal space diversity: A power- and bandwidthefficient diversity technique for the Rayleigh fading channel," IEEE Trans. Inform. Theory, vol. 44, pp. 1453-1467, July 1998.
[16] H. J. Larson and B. 0. Shubert, Probabilistic Models in Engineering Sciences, vol. I. New York: Wiley, 1979.
[17] S. Benedetto, E. Biglieri and V. Castellani, Digital Transmission Theory. Englewood Cliffs N.J.: Prentice Hall, 1987.
[18] Schlegel, C., Costello and D.J., Jr., "Bandwidth efficient coding for fading channels: code construction and performance analysis," IEEE J. Sel. Areas Commun., vol. 7, no. 9, pp. 1356 -1368, Dec. 1989.
[19] Adachi, F. and Sawahashi, M., "Decision feedback differential phase detection of M-ary DPSK signals," IEEE Trans. Vehic. Technol., vol. 44, no. 2, pp. 203-210, May 1995.
[20] John B. A. and Carl-Erik W. S., "Advances in constant Envelope coded modulation,"IEEE Commun. Mag., vol. 29, no. 12, pp. 36-45, Dec. 1991.
[21] C.-D. Chung and F.-H. Hwang, "Diversity coding techniques for differential phase modulation in a correlated Rayleigh fading channel," Proc. 11th IEEE PIMRC, London, UK, pp. 232 -236, Sept. 2000.
[22] C.-D. Chung and F.-H. Hwang, "Diversity codes for differential phase modulation in a correlated Rayleigh fading channel," IEEE Trans. Commun., vol. 49, no. 7, pp.1154-1157, July 2001.
[23] M. K. Simon and D. Divsalar, "Some new twists to problems involving the Gaussian probability integral," IEEE Trans. Commun., vol. 46, pp. 200-210, Feb. 1998.
[24] D. Raphaeli, "Distribution of noncentral indefinite quadratic forms in complex normal variables," IEEE Trans. Inform. Theory, vol. 42, pp. 1002-1007, Nov. 1996.
[25] J. M. Wozencraft and I.M. Jacobs, Principles of Communication Engineering. New York: Wiley, 1965.
[26] J. Gilbert and L. Gilbert, Linear Algebra and Matrix Theory. San Diego: Academic Press, 1985.
[27] H. E. Rose, A Course in Number Theory. New York: Oxford University Press, 1988.
[28] J. H. Winters, "Smart antennas for wireless systems," IEEE Personal Commun. Mag., pp. 23-27, Feb. 1998.
[29] S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.
[30] V. Tarokh, N. Seshadri, and A. R. Calderbank, "Space-time codes for high data rate wireless communications: Performance criterion and code construction," IEEE Trans. Inform. Theory, vol. 44, pp. 744-765, Mar. 1998.
[31] S. A. Al-Semari and T. E. Fuja, "Performance analysis of coherent TCM systems with diversity reception in slowly Rayleigh fading," IEEE Trans. Veh. Technol., vol. 48, pp.198-212, Jan. 1999.
[32] J. Massey, "Coding and modulation in digital communications", in Proc. 1974 Zurich Seminar on Digital Communications, pp. E2(1-4).
[33] J. K. Carvers, "Optimized use of diversity modes in transmitter diversity systems," in Proc. IEEE Veh. Technol. Conf. VTC'99, Houston, TX, pp. 1768-1773, April 1999.
[34] M. K. Simon and M. -S. Alouini, "Multiple symbol differential detection with diversity reception," IEEE Trans. Commun., vol. 49, pp. 1312-1319 , Aug 2001.
[35] T. Eng, N. Kong and L. B. Milstein, "Comparison of diversity combining techniques for Rayleigh-fading channels," IEEE Trans. Commun., vol. 44, pp. 1117-1129, Sep. 1996.
[36] A. Annamalai, C. Tellambura and V.K. Bhargava, "Equal-gain diversity receiver performance in wireless channels," IEEE Trans. Commun., vol. 48, pp. 1732-1745, Oct. 2000.
[37] Y. Ma and C. C. Chai, "Unified error probability analysis for generalized selection combining in Nakagami fading channels," IEEE J. Select. Areas Commun., vol. 18, p.p. 2198-2210, Nov. 2000.
[38] D. Divsalar and M. K. Simon, "The design of trellis coded MPSK for fading channel: Performance criteria," IEEE Trans. Commun., vol. 36, pp. 1004-1012, Sept. 1988.
[39] N. Seshadri and C.-E. W. Sundberg, "Multi-level trellis coded modulation for the Rayleigh fading channel," IEEE Trans. Commun., vol. 41, pp. 1820-1839, Nov. 1993.
[40] L.-F. Wei, "coded M-DPSK with built-in time diversity for fading channels," IEEE Trans. Inform. Theory, vol. 39, pp. 1004-1012, Sept. 1988.
[41] J. Winters, "Switched diversity with feedback for DPSK mobile radio systems," IEEE Trans. Veh. Technol., vol. 32, pp. 134-150, Feb. 1983.
[42] G. Raleigh and J. M. Cioffi, "Spatial-temporal coding for wireless communicationa," in Proc. IEEE GLOBECOM'96, pp. 1809-1814, 1996.
[43] A. Wittneben, "Base station modulation diversity for digital SIMULCAST," in Proc. IEEE'VTC, pp. 505-511, May 1993.
[44] N. Seshadri and J. H. Winters," Two signaling schemes for improving the error performance of frequency-division-duplex (FDD) transmission systems using transmitter antenna diversity," in Proc. IEEE'VTC, , pp. 508 -511, 1993.
[45] V. Tarokh, N. Seshadri and A. R. Calderbank, " Space-time codes for high data rate wireless communication: performance criterion and code construction ," IEEE Trans. Inform. Theory, vol. 44, pp. 744 -765, Mar 1998.
[46] A. Hiroike, F. Adachi, and N. Nakajima, " Combined effects of phase sweeping transmitter diversity and channel coding," IEEE Trans. Veh.-Technol., vol'. 41, pp. 170-176, May 1992.
[47] L. J. Cimini, Jr. and N. R. Sollenberger, "OFDM with diversity and coding for high bit-rate mobile data applications," in Proc. 3rd Int. Workshop on Mobile Multimedia Communications, Sept. 1996, thesis A3.1.1.
[48] V. Weerackody, "Diversity for direct-sequence spread spectrum system using multiple transmit antennas," in Proc. IEEE ICC'93, pp. 1775-1779, May 1993.
[49] H.E. Gamal and Jr. A. R., "On the design of algebraic space-time codes for MIMO block-fading channels," IEEE Trans. Inform. Theory, vol. 49, pp. 151 -163, Jan. 2003.
[50] Y. G. Li, J. H. Winters and N. R. Sollenberger, " MIMO-OFDM for wireless communications: signal detection with enhanced channel estimation," IEEE Trans. Commun., vol. 50, pp. 1471 -1477, Sept. 2002.
[51] K. J. Kerpez, "Constellations for good diversity performance," IEEE Trans. Commun., vol. 41, pp. 1412-1421, Sep. 1993.
[52] V. M. DaSilva and E. S. Sousa, "Fading-resistant modulation using several transmitter antennas," IEEE Trans. Commun., vol. 45, pp. 1236-1244, Oct. 1997.
[53] S. M. Selby, Standard Mathematical Table, 7th ed. Ohio: The Chemical Rubber Co., 1975.
[54] M.K. Simon and D. Divsalar, "Some new twists to problems involving the Gaussian probability integral," IEEE Trans. Commun., vol. 46, pp. 200:210, Feb. 1998.
[55] B. M. Hochwald and T. L. Marzetta, "Unitary space-time modulation for multipleantenna communications in Rayleigh flat fading," IEEE Trans. Inform. Theory, vol. 46, pp. 543-564, March 2000.
[56] B. L. Hughes, "Differential space-time modulation," IEEE Trans. Inform. Theory, vol. 46, pp. 2567-2578, Nov. 2000.
[57] B. M. Hochwald and W. Sweldens, "Differential unitary space-time modulation," IEEE Trans. Common., vol. 48, pp. 2041-2052, Dec. 2000.
[58] R. Schober and L. H. J. Lample, "Noncoherent receivers for differential space-time modulation," IEEE Trans. Commun., vol. COM-50, pp. 768-777, May 2002.
[59] R. Schober and L. H. J. Lample, "Differential modulation diversity," IEEE Trans. Veh. Technol., vol. 51, pp. 1431-14444, Nov. 2002.
[60] V. Tarokh and H. Jafakhani, "A differential detection scheme for transmit diversity," IEEE J. Select. Areas Commun., vol. 18, pp. 1169-1174, July 2000.
指導教授 鐘嘉德(Char-Dir Chung) 審核日期 2003-10-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明