博碩士論文 109324024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.146.255.66
姓名 林耀庭(Yao-Ting Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用全因子實驗設計進行三塔十二步驟真空變壓吸附法捕獲燃煤電廠1-kW煙道氣中二氧化碳之最適化研究
(Optimal investigation on carbon dioxide capture in 1-kW flue gas from coal-fired power plant by a three-bed twelve-step vacuum pressure swing adsorption using full factorial design)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 面對日益嚴重的溫室效應及嚴峻的氣候變遷,減碳已蔚為國際浪潮。目前捕獲二氧化碳有多種技術。由於變壓吸附法能耗低,資本投資低等優點,因此本研究將使用該技術進行捕獲台中燃煤電廠中煙道氣的二氧化碳之模擬與實驗,並期望能使捕獲的二氧化碳純度達95 %及回收率達65 %。
本研究首先以高壓氣體吸附分析儀搭配Thermo Cahn D-200 Digital Recording Balance測量二氧化碳及氮氣在吸附劑COSMO 13X沸石之等溫吸附曲線,計算平衡選擇率確認所選用的吸附劑具有良好的分離效果,並以Langmuir-Freundlich isotherm模型對等溫吸附曲線實驗數據進行擬合得到模擬所需之參數。接著以突破曲線及三塔變壓吸附程序之實驗驗證模擬所使用之相關參數是否合理,經過試誤法(trial-and-error)得出當等溫吸附擬合曲線之修正因子為0.55時,能使模擬與實驗結果接近。
接著利用三塔十二步驟變壓吸附程序模擬兩水準六因子之全因子實驗設計,先初步找出其中三個影響較為顯著之因子,再至台中電廠進行兩水準三因子的全因子實驗設計以探討因子對於塔底二氧化碳之純度、回收率、捕獲能耗及產率之影響,並建立各響應之迴歸模型找出最適化操作條件。最後得到當實驗步驟3/7/11時間為200秒,進料壓力3.5 bar,同向減壓壓力為0.30 bar時,可以得到捕獲二氧化碳純度97.50 %、回收率68.54 %、能耗1.43 GJ/tonne of CO2及產率0.42 kg CO2/kg adsorbent∙day之最適化結果。
摘要(英) With the concern over global warming and extreme climate change, carbon reduction has become a global trend in recent years. When it comes to carbon capture, there are several methods to deal with this. This research was concerned about carrying out pressure swing adsorption(PSA) simulation and experiments to capture carbon dioxide because of its low energy consumption and low capital investment, and aimed to capture carbon dioxide from 1-kW flue gas in Taichung coal-fired power plant with CO2 product purity reaching 95 %, and recovery reaching 65 % at the same time.
First of all, the adsorption isotherm curves of carbon dioxide and nitrogen for zeolite 13X molecule sieve were obtained by High Pressure Gas Adsorption Analyzer and Thermo Cahn D-200 Digital Recording Balance, and the equilibrium selectivity was calculated to confirm whether adsorbent has good ability to separate carbon dioxide and nitrogen.
Langmuir-Freundlich isotherm model was used to fit the adsorption experimental data in order to obtain the isotherm parameters for simulation. Furthermore, breakthrough curve and the three-bed PSA experiment were used for simulation verification. Through trial-and-error method, it was found that when the correction factor of adsorption isotherm equals to 0.55, the results of simulation and experiments can agree well.
Next, two-level six-factor full factorial design with three-bed twelve-step PSA process simulation was conducted for the sake of finding three relatively significant factors, and two-level three-factor full factorial design experiments were conducted in Taichung coal-fired power plant afterwards. Finally, the optimal operating conditions were predicted from regression model of design of experiments(DOE). After experiments at optimal operating conditions, the bottom CO2 product purity is 97.50 % with recovery 68.54 %, and energy consumption and productivity were measured to be 1.43 GJ/tonne of CO2 and 0.42 kg CO2/kg adsorbent∙day when step 3/7/11 time equaled to 200 s, adsorption pressure equaled to 3.5 bar and cocurrent depressurization pressure equaled to 0.30 bar.
關鍵字(中) ★ 變壓吸附
★ 燃煤電廠
★ 二氧化碳捕獲
★ 全因子設計
關鍵字(英) ★ pressure swing adsorption
★ coal-fired power plant
★ carbon dioxide capture
★ full factorial design
論文目次 摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xiii
符號說明 xv
第一章、 緒論 1
第二章、 簡介與文獻回顧 5
2-1 吸附之簡介 5
2-1-1 吸附基本原理 5
2-1-2 吸附劑與其選擇率 8
2-1-3 等溫吸附曲線(Adsorption isotherm) 10
2-1-4 突破曲線(Breakthrough curve) 12
2-1-5 變壓吸附程序之發展與演進 14
2-1-6 文獻回顧 18
2-1-7 研究目的 22
第三章、 實驗設備與方法 23
3-1 煙道氣之氣體與實驗吸附劑 23
3-2 變壓吸附程序模擬之理論 25
3-2-1 基本假設 26
3-2-2 統制方程式 27
3-2-3 吸附平衡關係式 30
3-2-3-1 等溫吸附平衡關係式 30
3-2-3-2 質傳速率模式 31
3-2-3-3 吸附熱關係式 33
3-2-4 參數推導 34
3-2-4-1 軸向分散係數(Axial dispersion coefficient) 34
3-2-4-2 熱傳係數 36
3-2-4-3 線性驅動力質傳係數(Mass transfer coefficient of linear driving force) 38
3-2-5 邊界條件與流速 41
3-2-5-1 邊界條件與節點流速 41
3-2-5-2 閥公式 42
3-2-6 求解步驟 43
3-3 實驗儀器 45
3-3-1 等溫吸附曲線實驗 45
3-3-2 突破曲線與真空變壓吸附實驗 48
3-3-2-1 煙道氣前處理部分 48
3-3-2-2 三塔真空變壓吸附實驗部分 52
3-4 製程描述 56
3-4-1 煙道氣預處理程序 59
3-4-2 三塔真空變壓吸附程序 59
3-5 實驗步驟 62
3-5-1 等溫吸附曲線 62
3-5-2 突破曲線實驗 63
3-5-3 三塔真空變壓吸附實驗 64
3-6 實驗數據計算方法 65
3-7 實驗設計(Design of Experiments) 67
3-7-1 全因子設計(Full factorial design) 67
3-7-2 變異數分析(Analysis of Variance, ANOVA) 68
3-7-3 殘差分析圖(Residual analysis plots) 70
3-7-4 迴歸分析(Regression analysis) 71
第四章、 等溫吸附曲線、突破曲線與三塔變壓吸附程序之模擬驗證 74
4-1 等溫吸附曲線模擬參數取得及驗證 75
4-2 台中電廠規模吸附塔之突破曲線模擬驗證 77
4-3 不同變壓吸附程序捕獲煙道氣二氧化碳之模擬與比較 82
4-4 三塔十二步驟變壓吸附程序捕獲煙道氣中二氧化碳之模擬驗證 87
4-5 三塔十二步驟變壓吸附模擬程序捕獲燃煤電廠煙道氣中二氧化碳之基礎條件 92
第五章、 結果與討論 94
5-1 等溫吸附曲線實驗 94
5-2 燃煤電廠煙道氣突破曲線實驗 96
5-3 變壓吸附程序模擬之兩水準六因子實驗設計分析 98
5-3-1 兩水準六因子之殘差分析圖 99
5-3-2 兩水準六因子之變異數分析 100
5-4 變壓吸附程序實驗之兩水準三因子實驗設計分析 105
5-4-1 利用Lenth’s method判斷因子之顯著性 108
5-4-2 殘差分析圖、迴歸模型建立及柏拉圖 111
5-4-3 三塔十二步驟變壓吸附程序之響應最適化 119
5-4-3-1 探討塔底二氧化碳純度及回收率最大值之響應最適化 120
5-4-3-2 探討塔底二氧化碳純度及回收率僅達目標值之響應最適化 121
5-4-3-3 響應最適化結果之比較與探討 123
第六章、 結論 125
參考文獻 127
附錄一、流速之估算方法 132
附錄二、三塔變壓吸附平台流程圖各元件對照表 135
附錄三、三塔變壓吸附平台流程圖元件命名法 141
附錄四、F分佈表 142
附錄五、t分佈表 143
附錄六、考慮不同因子及交互作用之殘差分析圖 144
參考文獻 [1] 行政院環境保護署氣候變遷辦公室, <溫室氣體減量及管理法修正草案總說明>, 台北, 民國110年10月.
[2] B. Metz, O. Davidson, H. D. Coninck, M. Loos and L. Meyer, IPCC special report on carbon dioxide capture and storage, Cambridge University Press, Cambridge, 2005.
[3] 台灣電力公司, <碳捕獲與封存CCS─國際篇>, 民國106年09月22日, 取自https://greennet.taipower.com.tw/Page_Knowledge/77.
[4] T. C. Drage, C. E. Snape, L. A. Stevens, J. Wood, J. Wang, A. I. Cooper, R. Dawson, X. Guo, C. Satterley and R. Irons, Materials challenges for the development of solid sorbents for post-combustion carbon capture, Journal of Materials Chemistry, vol. 22, no. 7, pp. 2815-2823, 2012.
[5] L. E. Øi and S. H. P. Kvam, Comparison of energy consumption for different CO2 absorption configurations using different simulation tools, Energy Procedia, vol. 63, pp. 1186-1195, 2014.
[6] P. Friedlingstein, M. W. Jones, M. O′Sullivan, R. M. Andrew, D. C. E. Bakker, J. Hauck, C. L. Quéré, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, J. G. Canadell, P. Ciais, R. B. Jackson, S. R. Alin, P. Anthoni, N. R. Bates, M. Becker, N. Bellouin, L. Bopp, T. T. T. Chau, F. Chevallier, L. P. Chini, M. Cronin, K. I. Currie, B. Decharme, L. M. Djeutchouang, X. Dou, W. Evans, R. A. Feely, L. Feng, T. Gasser, D. Gilfillan, T. Gkritzalis, G. Grassi, L. Gregor, N. Gruber, Ö. Gürses, I. Harris, R. A. Houghton, G. C. Hurtt, Y. Iida, T. Ilyina, I. T. Luijkx, A. Jain, S. D. Jones, E. Kato, D. Kennedy, K. K. Goldewijk, J. Knauer, J. I. Korsbakken, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, S. Lienert, J. Liu, G. Marland, P. C. McGuire, J. R. Melton, D. R. Munro, J. E. M. S. Nabel, S. I. Nakaoka, Y. Niwa, T. Ono, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, C. Rödenbeck, T. M. Rosan, J. Schwinger, C. Schwingshackl, R. Séférian, A. J. Sutton, C. Sweeney, T. Tanhua, P. P. Tans, H. Tian, B. Tilbrook, F. Tubiello, G. R. V. D. Werf, N. Vuichard, C. Wada, R. Wanninkhof, A. J. Watson, D. Willis, A. J. Wiltshire, W. Yuan, C. Yue, X. Yue, S. Zaehle and J. Zeng, Global carbon budget 2021, Earth System Science Data, vol. 14, no. 4, pp. 1917-2005, 2022.
[7] World Meteorological Organization (WMO), The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2020, 2021, https://library.wmo.int/doc_num.php?explnum _id=10904.
[8] J. Wang and X. Guo, Adsorption kinetic models: Physical meanings, applications, and solving methods, Journal of Hazardous materials, vol. 390, pp. 122156, 2020.
[9] D. Broom, Characterizing adsorbents for gas separations, Chemical Engineering Progress, vol. 114, no. 3, pp. 30-37, 2018.
[10] R. T. Yang, Gas separation by adsorption processes, vol. 1, Imperial College Press, London, 1997.
[11] S. U. Rege and R. T. Yang, A simple parameter for selecting an adsorbent for gas separation by pressure swing adsorption, Separation science and technology, vol. 36, no. 15, pp. 3355-3365, 2001.
[12] N. Ayawei, A. N. Ebelegi and D. Wankasi, Modelling and interpretation of adsorption isotherms, Journal of chemistry, vol. 2017, 2017.
[13] L. Czepirski, M. R. Balys and E. K. Czepirska, Some generalization of Langmuir adsorption isotherm, Internet Journal of Chemistry, vol. 3, no. 14, pp. 1099-8292, 2000.
[14] K. Y. Foo and B. H. Hameed, Insights into the modeling of adsorption isotherm systems, Chemical engineering journal, vol. 156, no. 1, pp. 2-10, 2010.
[15] C. Yon and P. Turnock, Multicomponent adsorption equilibria on molecular sieves, AIChE symposium series, 1971, vol. 67, no. 117, pp. 75-83.
[16] W. L. McCabe, J. C. Smith and P. Harriott, Unit operations of chemical engineering, 7th ed., McGraw-Hill, New york, 2005.
[17] Z. Z. Chowdhury, S. B. A. Hamid and S. M. Zain, Evaluating design parameters for breakthrough curve analysis and kinetics of fixed bed columns for Cu (II) cations using lignocellulosic wastes, BioResources, vol. 10, no. 1, pp. 732-749, 2015.
[18] C. W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by adsorption, U.S. Patent 2944627, 1960.
[19] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and technology. Springer Science & Business Media, Berlin, 2012.
[20] W.-K. Choi, T. I. Kwon, Y. K. Yeo, H. Lee, H. K. Song and B. K. Na, Optimal operation of the pressure swing adsorption (PSA) process for CO2 recovery, Korean Journal of Chemical Engineering, vol. 20, no. 4, pp. 617-623, 2003.
[21] W. D. Marsh, F. S. Pramuk, R. C. Hoke, and C. W. Skarstrom, Pressure equalization depressuring in heatless adsorption, U.S. Patent 3142547, 1964.
[22] P. E. Jahromi, S. Fatemia, A. Vatania, J. A. Ritter and A. D. Ebnerb, Purification of helium from a cryogenic natural gas nitrogen rejection unit by pressure swing adsorption, Separation and Purification Technology, vol. 193, pp. 91-102, 2018.
[23] M. P. G. De and D. Daniel, Process for separating a binary gaseous mixture by adsorption, U.S. Patent 3155468, 1964.
[24] B.-K. Na, H. Lee, K. K. Koo and H. K. Song, Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon, Industrial & engineering chemistry research, vol. 41, no. 22, pp. 5498-5503, 2002.
[25] K. Chihara and M. Suzuki, Air drying by pressure swing adsorption, Journal of chemical engineering of Japan, vol. 16, no. 4, pp. 293-299, 1983.
[26] J. J. Collins, Air Separation by Adsorption, U.S. Patent 4026680, 1975.
[27] S. Doong and R. Yang, Hydrogen purification by the multibed pressure swing adsorption process, Reactive Polymers, Ion Exchangers, Sorbents, vol. 6, no. 1, pp. 7-13, 1987.
[28] L. Jiang, V. G. Fox and L. T. Biegler, Simulation and optimal design of multiple‐bed pressure swing adsorption systems, AIChE Journal, vol. 50, no. 11, pp. 2904-2917, 2004.
[29] A. Fuderer and E. Rudelstorfer, Selective Adsorption Process, U.S. Patent no.3986849, 1976.
[30] L. Hauchhum and P. Mahanta, Carbon dioxide adsorption on zeolites and activated carbon by pressure swing adsorption in a fixed bed, International Journal of Energy and Environmental Engineering, vol. 5, no. 4, pp. 349-356, 2014.
[31] K. Chue, J. N. Kim, Y. J. Yoo, S. H. Cho and R. T. Yang, Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption, Industrial & Engineering Chemistry Research, vol. 34, no. 2, pp. 591-598, 1995.
[32] J. Zhang, P. Xiao, G. Li and P. A. Webley, Effect of flue gas impurities on CO2 capture performance from flue gas at coal-fired power stations by vacuum swing adsorption, Energy Procedia, vol. 1, no. 1, pp. 1115-1122, 2009.
[33] G. Li, P. Xiao, P. Webley, J. Zhang, R. Singh and M. Marshall, Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X, Adsorption, vol. 14, no. 2, pp. 415-422, 2008.
[34] L. Wang, Y. Yang, W. Shen, X. Kong, P. Li, J. Yu and A. E. Rodrigues, CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units, Industrial & Engineering Chemistry Research, vol. 52, no. 23, pp. 7947-7955, 2013.
[35] D. Li, Y. Zhou, Y. Shen, W. Sun, Q. Fu, H. Yan and D. Zhang, Experiment and simulation for separating CO2/N2 by dual-reflux pressure swing adsorption process, Chemical Engineering Journal, vol. 297, pp. 315-324, 2016.
[36] Z. Liu, C. A. Grande, P. Li, J. Yu and A. E. Rodrigues, Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas, Separation and Purification Technology, vol. 81, no. 3, pp. 307-317, 2011.
[37] X. Yu, B. Liu, Y. Shen and D. Zhang, Design and experiment of high-productivity two-stage vacuum pressure swing adsorption process for carbon capturing from dry flue gas, Chinese Journal of Chemical Engineering, vol. 43, pp. 378-391, 2022.
[38] R. Haghpanah, R. Nilam, A. Rajendran, S. Farooq and I. A. Karimi, Cycle synthesis and optimization of a VSA process for postcombustion CO2 capture, AIChE Journal, vol. 59, no. 12, pp. 4735-4748, 2013.
[39] J. Ling, P. Xiao, A. Ntiamoah, D. Xu, P. Webley and Y. Zhai, Strategies for CO2 capture from different CO2 emission sources by vacuum swing adsorption technology, Chinese journal of chemical engineering, vol. 24, no. 4, pp. 460-467, 2016.
[40] 李念祖, <利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗>, 碩士論文, 國立中央大學, 民國104年6月.
[41] J. M. Smith, H. C. V. Ness and M. M. Abbott, Introduction to chemical engineering thermodynamics, McGraw-Hill, New York, 1950.
[42] J. H. Park, H. T. Beum, J. N. Kim, and S.-H. Cho, Numerical analysis on the power consumption of the PSA process for recovering CO2 from flue gas, Industrial & engineering chemistry research, vol. 41, no. 16, pp. 4122-4131, 2002.
[43] C. T. Chou and C. Y. Chen, Carbon dioxide recovery by vacuum swing adsorption, Separation and Purification Technology, vol. 39, no. 1-2, pp. 51-65, 2004.
[44] P. H. Turnock and R. H. Kadlec, Separation of nitrogen and methane via periodic adsorption, AIChE Journal, vol. 17, no. 2, pp. 335-342, 1971.
[45] R. Yang and S. Doong, Gas separation by pressure swing adsorption: A pore‐diffusion model for bulk separation, AIChE Journal, vol. 31, no. 11, pp. 1829-1842, 1985.
[46] S. Farooq and D. Ruthven, A comparison of linear driving force and pore diffusion models for a pressure swing adsorption bulk separation process, Chemical Engineering Science, vol. 45, no. 1, pp. 107-115, 1990.
[47] E. Glueckauf and J. Coates, Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation, Journal of the Chemical Society (Resumed), pp. 1315-1321, 1947.
[48] D. D. Do, Adsorption analysis: Equilibria and kinetics (with cd containing computer MATLAB programs), World Scientific, London, 1998.
[49] C. Y. Wen and L. T. Fan, Models for flow systems and chemical reactors, Marcel Dekker, New York, 1975.
[50] R. B. Bird, Transport phenomena, Applied Mechanics Reviews, vol. 55, no. 1, pp. R1-R4, 2002.
[51] E. Fuller and J. Giddings, A comparison of methods for predicting gaseous diffusion coefficients, Journal of Chromatographic Science, vol. 3, no. 7, pp. 222-227, 1965.
[52] E. N. Fuller, K. Ensley, and J. C. Giddings, Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections, The Journal of Physical Chemistry, vol. 73, no. 11, pp. 3679-3685, 1969.
[53] D. Fairbanks and C. Wilke, Diffusion coefficients in multicomponent gas mixtures, Industrial & Engineering Chemistry, vol. 42, no. 3, pp. 471-475, 1950.
[54] W. H. McAdams, Heat Transmission, 3rd ed, McGraw-Hill, New York, 1954.
[55] S. Farooq and D. M. Ruthven, Heat effects in adsorption column dynamics. 2. Experimental validation of the one-dimensional model, Industrial & engineering chemistry research, vol. 29, no. 6, pp. 1084-1090, 1990.
[56] N. Wakao, S. Kaguei and T. Funazkri, Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: correlation of Nusselt numbers, Chemical engineering science, vol. 34, no. 3, pp. 325-336, 1979.
[57] G. Carta and A. Cincotti, Film model approximation for non-linear adsorption and diffusion in spherical particles, Chemical Engineering Science, vol. 53, no. 19, pp. 3483-3488, 1998.
[58] J. Kärger and D. M. Ruthven, Diffusion in zeolites and other microporous solids, Wiley, New York, 1992.
[59] M. LeVan, G. Carta and C. Yon, Adsorption and ion exchange in Perry’s Chemical Engineers Handbook, 7th ed., McGrawHill, New York, 1997.
[60] K. Kawazoe, M. Suzuki and K. Chihara, Chromatographic study of diffusion in molecule-sieving carbon, Journal of chemical engineering of Japan, vol. 7, no. 3, pp. 151-157, 1974.
[61] H. Qinglin, S. Sundaram and S. Farooq, Revisiting transport of gases in the micropores of carbon molecular sieves, Langmuir, vol. 19, no. 2, pp. 393-405, 2003.
[62] X. Hu, E. Mangano, D. Friedrich, H. Ahn and S. Brandani, Diffusion mechanism of CO2 in 13X zeolite beads, Adsorption, vol. 20, no. 1, pp. 121-135, 2014.
[63] P. V. Danckwerts, Continuous flow systems: distribution of residence times, Chemical engineering science, vol. 2, no. 1, pp. 1-13, 1953.
[64] P. A. Webley and J. He, Fast solution-adaptive finite volume method for PSA/VSA cycle simulation; 1 single step simulation, Computers & Chemical Engineering, vol. 23, no. 11-12, pp. 1701-1712, 2000.
[65] S. Awad and R. Nagarajan, Development in Surface Contamination and Cleaning, Elsevier, Amsterdam, 2010.
[66] D. C. Montgomery, Design and analysis of experiments, John Wiley & Sons, New Jersey, 2017.
[67] J. Collins, The LUB/equilibrium section concept for fixed-bed adsorption, Chemical Engineering Progress Symposium Series, vol. 63, no. 74, pp. 31-35, 1967.
[68] 郭家禎, <利用三塔式真空變壓吸附法捕獲燃煤電廠煙道氣中二氧化碳之實驗研究>, 碩士論文, 國立中央大學, 民國109年1月.
[69] 張鈞翔, <利用真空變壓吸附法捕獲發電廠煙道氣中二氧化碳之三塔實驗設計分析模擬研究>, 碩士論文, 國立中央大學, 民國109年6月.
[70] M. Mofarahi and E. J. Shokroo, Comparison of two pressure swing adsorption processes for air separation using zeolite 5A and zeolite 13X, Petroleum & coal, vol. 55, no. 3, 2013.
[71] K. Kamatani, Efficient strategy for the Markov chain Monte Carlo in high-dimension with heavy-tailed target probability distribution, Bernoulli, vol. 24, no. 4B, pp. 3711-3750, 2018.
[72] M. Hamada and N. Balakrishnan, Analyzing unreplicated factorial experiments: a review with some new proposals, Statistica Sinica, vol. 8, no. 1, pp. 1-28, 1998.
[73] R. V. Lenth, Quick and easy analysis of unreplicated factorials, Technometrics, vol. 31, no. 4, pp. 469-473, 1989.
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2022-9-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明