博碩士論文 109324071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.116.62.132
姓名 蔣竣東(Chun-Tung Chiang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 可控矽烷化:以耐水解甲基丙烯酸酯氮矽三環 於矽基材上作為功能性高分子之構成單元
(Controlled Silanization:Hydrolysis Resistance Methacrylate Silatrane as a Building Block for Functional Polymers on Silicon)
相關論文
★ 聚(4-乙烯基吡啶)和聚(2-乙烯基吡啶)薄膜的表面不穩定性★ 利用小角度X光散射和廣角度X光繞射探討聚環氧乙烷於醇類中的結晶現象
★ 溶劑品質對聚(苯乙烯-b-環氧乙烷)在四氫呋喃/醇類共溶劑中的鏈聚集、自組裝、微胞化的影響★ 含磷酸膽鹼雙離子之功能性嵌段共聚物塗層於熱塑型聚氨酯導管
★ 光交聯及生物啟發磷膽鹽雙離子共聚物連續沉積醫療塗層於熱塑型聚氨酯材料★ 分子自組裝結構對雙離子高分子醫療塗層穩定性與抗汙功能的影響
★ 基於動態鍵的多功能丙烯酸交聯劑★ 連續微流道反應器中進行防污聚合物篩選
★ 用於聚氨酯植入物表面功能化具有潤滑和抗污性能之光交聯醫用塗層★ 高度纏結的雙離子水凝膠
★ Lubricant and Anti-fouling Coatings for Silicone Catheter★ 可聚合界面活性劑:膠囊化有機色料於水相溶液中展現膠體穩定性及於纖維素上的防水性能
★ 聚胜肽電解質材料合成及其性質研究分析★ 建立耐氧光聚合連續流反應器
★ 建立多功能芳香族雙硫鍵交聯丙烯酸彈性聚合物★ 熱誘導混合聚丙烯薄膜含雙離子共聚物的製備研究及其抗污性能的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-1以後開放)
摘要(中) 用於表面修飾的有機矽烷官能基(silane)因為其方便的快速製備、高實用性及對於不 同表面材料皆有出色的效果而受到重視。商用的矽烷官能基3-(Trimethoxysilyl)propyl methacrylate (TMSPMA)已廣泛用在製備有機及無機混合材料,該結構的頭基具有三個 甲氧基能與金屬表面的羥基反應形成穩定之共價鍵,而在末端官能基則有甲基丙烯酸官 能基團能與其他單體進行高分子及交聯反應來形成帶有矽烷之功能性高分子。然而,矽 烷官能基容易水解且不易保存的特性導致需要在無水的環境下進行反應,因此傳統的矽 烷官能基限制了在工業上應用性。在本研究中,我們合成了具有三環籠狀結構和跨環狀 氮矽配位鍵的甲基丙烯酸酯氮矽三環類化合物(Methylacrylate silatrane, MAST),此結構 在水中表現出優異的化學穩定性,此外MAST 能與生物啟發之雙離子材料 2-甲基丙烯 醯氧基乙基磷酸膽鹼單體(2-Methacryloyloxyethyl phosphorylcholine, MPC)進行高分子反 應並將抗汙性質應用在矽基材的表面。MAST 的化學結構使用了核磁共振光譜學(NMR) 及質譜儀(MS)來佐證其結構,另外利用了核磁共振光譜學、X射線光電子能譜學(XPS)、原子力顯微鏡(AFM)、橢圓偏光儀(Ellipsometry)及水接觸角(Water contact angle)等方法與 商用矽烷官能基(TMSPMA)進行在水中的化學穩定性、分子取向、表面粗糙度、薄膜膜 厚及潤濕性的比較。此外,抗污的雙離子材料MPC 與MAST 利用傳統自由基聚合成高 分子用於玻璃修飾上,其出色的修飾平整性及親水能力,透過細菌及蛋白質的貼附測試 來證實。本論文透過發展一種穩定且功能強大之甲基丙烯酸酯氮矽三環類化合物,並具 有重複性、可定向性及性質定義明確以達到可控矽烷化的目的,進而推動於矽烷化學的發展。
摘要(英) Organosilicons for surface modification are emphasized for their ease of rapid preparation high availability, and effective modification of different interfacial. The commercial silane 3- (Trimethoxysilyl)propyl methacrylate (TMSPMA) has been widely used in the preparation of organic/inorganic hybrid materials. The silane agent has a trialkoxysilyl group, which reacts with hydroxyl groups on the metal surface and then form Si-O-metal covalent bonds. The methacrylic functional group of the silane agent was firstly polymerized with the other monomers to form a silane-containing functional ploymer. However, TMSPMA is easy to be hydrolyzed, making it inconvenient to store, and requiring an anhydrous solvent for coating. The constrains of conventional metharylic silanes lead to troublesome for industrial implementations. In this study, we synthesized methylacrylate silatrane (MAST) with a tricyclic caged structure and a transannular N → Si dative bond, which shows excellent chemical stability in the presence of water. MAST was applied to co-polymerize with bio-inspired zwitterionic 2-Methacryloyloxyethyl phosphorylcholine (MPC) monomer for antifouling modification on silica surfaces. The chemical structure of the developed MAST was characterized by using nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MS). The chemical stability in presence of water, molecular orientation, roughness, the film thickness and wettability of methacrylated silatranes were compared with commercially available TMSPMA by using NMR, X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), ellipsometry, water contact angle, respectively. In addition, an antifouling zwitterionic MPC monomer was employed for constructing a functional copolymer with MAST by conventional free polymerization for surface deposition on silicon. The functionalities of coatings were verified by treating with hydrogel attachment, protein fouling test, and bacterial adsorption. The thesis contributes the advance of silane chemistry by developing a robust and stable acrylic organolsilane for reproducible, orderly oriented, well defined polymeric coating with an aim for controlled silanization.
關鍵字(中) ★ 可控矽烷化
★ 甲基丙烯酸酯矽烷官能
★ 非特異性吸附
★ 雙離子材料
★ 氮矽三環類化合物
★ 耐水解
關鍵字(英) ★ methacrylated silatranes
★ controlled silanization
★ zwitterionic materials
★ antifouling properties
★ hydrolysis resistance
★ silatrane
論文目次 中文摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 x
一、文獻回顧 1
1-1 自組裝單層膜 1
1-1-1 矽烷官能基 2
1-1-2 氮矽三環類化合物 7
1-2 生物汙染 12
1-3 抗非特異性吸附之材料 13
1-3-1 非特異性吸附現象 13
1-3-2 抗沾黏材料特性 14
1-3-3 聚乙二醇材料 14
1-3-4 雙離子材料 15
1-3-5 PC類雙離子材料 16
二、研究目的 17
三、藥品清單與實驗設備 19
3-1 實驗藥品清單 19
3-2 實驗設備清單 21
3-3 材料合成 22
3-3-1 胺基氮矽三環(Amionpropyl silatrane, APS) 22
3-3-2 甲基丙烯酸酯氮矽三環(Methylacrylate silatrane, MAST) 22
3-3-3 合成p(MPC9-co-MAST1)高分子 23
3-3-4 合成p(MPC9-co-TMSPMA1)高分子 24
3-3-5 無水乙醇之製備 24
3-4實驗方法 25
3-4-1自組裝單層膜之製備 25
3-4-2 水接觸角之量測(Water contact angle) 25
3-4-3 薄膜厚度之量測(Ellipsometry) 25
3-4-5 表面型態之量測(AFM) 25
3-4-6 表面元素之量測(XPS) 26
3-4-7 甲基丙烯酸酯官能基活性之定性測試 26
3-4-8 凝膠滲透色譜分析(GPC) 26
3-4-9 細菌貼附測試(Bacteria attachment) 27
3-4-10 蛋白質貼附測試(Protein adsorption) 27
3-4-11 MAST與TMSPMA水解測試(Hydrolysis test) 28
3-4-12 統計分析 28
四、結果與討論 29
4-1 MAST化學結構鑑定與分析 29
4-1-1 胺基氮矽三環(APS)之1H NMR圖譜 29
4-1-2 甲基丙烯酸酯氮矽三環(MAST)之1H NMR圖譜 30
4-1-3 甲基丙烯酸酯氮矽三環(MAST)之質譜儀分析 31
4-2 比較使用MAST與TMSPMA進行表面修飾的差異性 32
4-2-1 MAST與TMSPMA水接觸角之量測 32
4-2-2 MAST與TMSPMA薄膜膜度之量測 33
4-2-3 MAST與TMSPMA 3D分子模型 34
4-2-4 MAST與TMSPMA表面元素分析 35
4-2-5 MAST與TMSPMA表面形貌分析 38
4-2-6 MAST與TMSPMA甲基丙烯酸酯官能基活性之定性測試 39
4-2-7 MAST與TMSPMA之水解測試 40
4-2-8 MAST與TMSPMA之FTIR圖譜 41
4-3高分子化學結構鑑定與分析 42
4-3-1 p(MPC9-co-MAST1)高分子之1H NMR圖譜 42
4-3-2 p(MPC9-co-TMSPMA1)高分子之1H NMR圖譜 43
4-3-3 p(MPC9-co-MAST1)與p(MPC9-co-TMSPMA1)高分子數據比較 44
4-4-1 p(MPC9-co-MAST1)與p(MPC9-co-TMSPMA1)水接觸角之量測 45
4-4-2 p(MPC9-co-MAST1)與p(MPC9-co-TMSPMA1)薄膜厚度之量測 46
4-4-3 p(MPC9-co-MAST1)與p(MPC9-co-TMSPMA1)表面元素分析 47
4-4-4 p(MPC9-co-MAST1)與p(MPC9-co-TMSPMA1)表面形貌分析 50
4-4-5 p(MPC9-co-MAST1)與p(MPC9-co-TMSPMA1)細菌貼附測試 51
4-4-6 p(MPC9-co-MAST1)與p(MPC9-co-TMSPMA1)蛋白質貼附測試 53
五、結論 54
六、未來展望 55
七、參考文獻 56
參考文獻 1. Love, J.C., L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, and G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical reviews, 2005. 105(4): pp. 1103-1170.
2. Vericat, C., M. Vela, G. Benitez, P. Carro, and R. Salvarezza, Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem. Soc. Rev., 2010. 39(5): pp. 1805-1834.
3. Ulman, A., Formation and structure of self-assembled monolayers. Chemical reviews, 1996. 96(4): pp. 1533-1554.
4. Sullivan, T.P. and W.T. Huck, Reactions on monolayers: organic synthesis in two dimensions. Eur. J. Org. Chem., 2003. 2003(1): pp. 17-29.
5. Wang, L., U.S. Schubert, and S. Hoeppener, Surface chemical reactions on self-assembled silane based monolayers. Chem. Soc. Rev., 2021. 50(11): pp. 6507-6540.
6. Pujari, S.P., L. Scheres, A.T. Marcelis, and H. Zuilhof, Covalent surface modification of oxide surfaces. Angew. Chem. Int. Ed., 2014. 53(25): pp. 6322-6356.
7. Witucki, G.L., A silane primer: chemistry and applications of alkoxy silanes. Journal of coatings technology, 1993. 65: pp. 57-57.
8. Ye, S.-H., Y.-S. Jang, Y.-H. Yun, V. Shankarraman, J.R. Woolley, Y. Hong, L.J. Gamble, K. Ishihara, and W.R. Wagner, Surface modification of a biodegradable magnesium alloy with phosphorylcholine (PC) and sulfobetaine (SB) functional macromolecules for reduced thrombogenicity and acute corrosion resistance. Langmuir, 2013. 29(26): pp. 8320-8327.
9. Ye, S.-H., C.A. Johnson Jr, J.R. Woolley, H. Murata, L.J. Gamble, K. Ishihara, and W.R. Wagner, Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity. Colloids and Surfaces B: Biointerfaces, 2010. 79(2): pp. 357-364.
10. Yeh, S.-B., C.-S. Chen, W.-Y. Chen, and C.-J. Huang, Modification of silicone elastomer with zwitterionic silane for durable antifouling properties. Langmuir, 2014. 30(38): pp. 11386-11393.
11. Roy, S., S. Banerjee, and P. De, Cationic Polymerization of Nonpolar Vinyl Monomers for Producing High Performance Polymers. 2016.
12. Ogata, Y., H. Seto, T. Murakami, Y. Hoshino, and Y. Miura, Affinity separation of lectins using porous membranes immobilized with glycopolymer brushes containing mannose or N-acetyl-D-glucosamine. Membranes, 2013. 3(3): pp. 169-181.
13. Gauthier, S., J. Aimé, T. Bouhacina, A. Attias, and B. Desbat, Study of grafted silane molecules on silica surface with an atomic force microscope. Langmuir, 1996. 12(21): pp. 5126-5137.
14. Estephan, Z.G., J.A. Jaber, and J.B. Schlenoff, Zwitterion-stabilized silica nanoparticles: toward nonstick nano. Langmuir, 2010. 26(22): pp. 16884-16889.
15. Zhang, J., J. Hoogboom, P.H. Kouwer, A.E. Rowan, and T. Rasing, Uniform N-(2-aminoethyl)(3-aminopropyl) trimethoxysilane monolayer growth in water. The Journal of Physical Chemistry C, 2008. 112(51): pp. 20105-20108.
16. Wen, K., R. Maoz, H. Cohen, J. Sagiv, A. Gibaud, A. Desert, and B.M. Ocko, Postassembly chemical modification of a highly ordered organosilane multilayer: New insights into the structure, bonding, and dynamics of self-assembling silane monolayers. ACS nano, 2008. 2(3): pp. 579-599.
17. Fadeev, A.Y. and T.J. McCarthy, Trialkylsilane monolayers covalently attached to silicon surfaces: wettability studies indicating that molecular topography contributes to contact angle hysteresis. Langmuir, 1999. 15(11): pp. 3759-3766.
18. Gun, J. and J. Sagiv, On the formation and structure of self-assembling monolayers: III. Time of formation, solvent retention, and release. J. Colloid Interface Sci., 1986. 112(2): pp. 457-472.
19. Maoz, R., H. Cohen, and J. Sagiv, Specific nonthermal chemical structural transformation induced by microwaves in a single amphiphilic bilayer self-assembled on silicon. Langmuir, 1998. 14(21): pp. 5988-5993.
20. McGovern, M.E., K.M. Kallury, and M. Thompson, Role of solvent on the silanization of glass with octadecyltrichlorosilane. Langmuir, 1994. 10(10): pp. 3607-3614.
21. Manifar, T., A. Rezaee, M. Sheikhzadeh, and S. Mittler, Formation of uniform self-assembly monolayers by choosing the right solvent: OTS on silicon wafer, a case study. Appl. Surf. Sci., 2008. 254(15): pp. 4611-4619.
22. Zhu, M., M.Z. Lerum, and W. Chen, How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica. Langmuir, 2012. 28(1): pp. 416-423.
23. Schmidt, M.W., T.L. Windus, and M.S. Gordon, Structural trends in silicon atranes. Journal of the American Chemical Society, 1995. 117(28): pp. 7480-7486.
24. Pestunovich, V., S. Kirpichenko, and M. Voronkov, Silatranes and their tricyclic analogs. The Chemistry of organic silicon compounds, 1998. 2: pp. 1447.
25. Tseng, Y.-T., H.-Y. Lu, J.-R. Li, W.-J. Tung, W.-H. Chen, and L.-K. Chau, Facile functionalization of polymer surfaces in aqueous and polar organic solvents via 3-mercaptopropylsilatrane. ACS applied materials & interfaces, 2016. 8(49): pp. 34159-34169.
26. Huang, C.-J. and Y.-Y. Zheng, Controlled silanization using functional silatrane for thin and homogeneous antifouling coatings. Langmuir, 2018. 35(5): pp. 1662-1671.
27. Adamovich, S.N., E.N. Oborina, A.M. Nalibayeva, and I.B. Rozentsveig, 3-Aminopropylsilatrane and Its Derivatives: A Variety of Applications. Molecules, 2022. 27(11): pp. 3549.
28. Huang, K.-W., C.-W. Hsieh, H.-C. Kan, M.-L. Hsieh, S. Hsieh, L.-K. Chau, T.-E. Cheng, and W.-T. Lin, Improved performance of aminopropylsilatrane over aminopropyltriethoxysilane as a linker for nanoparticle-based plasmon resonance sensors. Sensors and Actuators B: Chemical, 2012. 163(1): pp. 207-215.
29. Bae, J., D.S. Kim, H. Yoo, E. Park, Y.-G. Lim, M.-S. Park, Y.-J. Kim, and H. Kim, High-Performance Si/SiO x Nanosphere Anode Material by Multipurpose Interfacial Engineering with Black TiO2–x. ACS applied materials & interfaces, 2016. 8(7): pp. 4541-4547.
30. Zheng, G., Y. Xiang, L. Xu, H. Luo, B. Wang, Y. Liu, X. Han, W. Zhao, S. Chen, and H. Chen, Controlling surface oxides in Si/C nanocomposite anodes for high‐performance Li‐ion batteries. Advanced Energy Materials, 2018. 8(29): pp. 1801718.
31. Chen, S.-W., T.T.A. Hong, C.-T. Chiang, L.-K. Chau, and C.-J. Huang, Versatile Thiol-and Amino-Functionalized Silatranes for in-situ polymerization and Immobilization of Gold Nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2022. 132: pp. 104129.
32. Ortega-Peña, S. and E. Hernández-Zamora, Microbial biofilms and their impact on medical areas: physiopathology, diagnosis and treatment. Boletin medico del Hospital Infantil de Mexico, 2018. 75(2): pp. 79-88.
33. Bixler, G.D. and B. Bhushan, Biofouling: lessons from nature. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012. 370(1967): pp. 2381-2417.
34. Weinstein, R.A. and R.O. Darouiche, Device-associated infections: a macroproblem that starts with microadherence. Clinical infectious diseases, 2001. 33(9): pp. 1567-1572.
35. Magill, S.S., J.R. Edwards, W. Bamberg, Z.G. Beldavs, G. Dumyati, M.A. Kainer, R. Lynfield, M. Maloney, L. McAllister-Hollod, and J. Nadle, Multistate point-prevalence survey of health care–associated infections. New England Journal of Medicine, 2014. 370(13): pp. 1198-1208.
36. Xie, D., L. Howard, and R. Almousa, Surface modification of polyurethane with a hydrophilic, antibacterial polymer for improved antifouling and antibacterial function. J. Biomater. Appl., 2018. 33(3): pp. 340-351.
37. Osinaga, P.W., R.H.M. Grande, R.Y. Ballester, M.R.L. Simionato, C.R.M.D. Rodrigues, and A. Muench, Zinc sulfate addition to glass-ionomer-based cements: influence on physical and antibacterial properties, zinc and fluoride release. Dent. Mater., 2003. 19(3): pp. 212-217.
38. Roohpour, N., A. Moshaverinia, J.M. Wasikiewicz, D. Paul, M. Wilks, M. Millar, and P. Vadgama, Development of bacterially resistant polyurethane for coating medical devices. Biomedical materials, 2012. 7(1): pp. 015007.
39. Yuan, S., Y. Li, S. Luan, H. Shi, S. Yan, and J. Yin, Infection-resistant styrenic thermoplastic elastomers that can switch from bactericidal capability to anti-adhesion. Journal of Materials Chemistry B, 2016. 4(6): pp. 1081-1089.
40. Lin, P., C.-W. Lin, R. Mansour, and F. Gu, Improving biocompatibility by surface modification techniques on implantable bioelectronics. Biosens. Bioelectron., 2013. 47: pp. 451-460.
41. Leckband, D. and J. Israelachvili, Intermolecular forces in biology. Quarterly reviews of biophysics, 2001. 34(2): pp. 105-267.
42. Ostuni, E., R.G. Chapman, R.E. Holmlin, S. Takayama, and G.M. Whitesides, A survey of structure− property relationships of surfaces that resist the adsorption of protein. Langmuir, 2001. 17(18): pp. 5605-5620.
43. Roberts, M., M. Bentley, and J. Harris, Chemistry for peptide and protein PEGylation. Advanced drug delivery reviews, 2002. 54(4): pp. 459-476.
44. Luk, Y.-Y., M. Kato, and M. Mrksich, Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir, 2000. 16(24): pp. 9604-9608.
45. Harris, J.M., Introduction to biotechnical and biomedical applications of poly (ethylene glycol), in Poly (ethylene glycol) Chemistry. 1992, Springer. pp. 1-14.
46. Chen, S., L. Li, C. Zhao, and J. Zheng, Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): pp. 5283-5293.
47. Wieland, B., J.P. Lancaster, C.S. Hoaglund, P. Holota, and W.J. Tornquist, Electrochemical and infrared spectroscopic quantitative determination of the platinum-catalyzed ethylene glycol oxidation mechanism at CO adsorption potentials. Langmuir, 1996. 12(10): pp. 2594-2601.
48. Zwaal, R.F. and A.J. Schroit, Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood, The Journal of the American Society of Hematology, 1997. 89(4): pp. 1121-1132.
49. Holmlin, R.E., X. Chen, R.G. Chapman, S. Takayama, and G.M. Whitesides, Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir, 2001. 17(9): pp. 2841-2850.
50. Kadoma, Y., Synthesis and hemolysis test of the polymer containing phosphorylcholine groups. Koubunshi Ronbunshu, 1978. 35: pp. 423-427.
51. Ishihara, K., T. Ueda, and N. Nakabayashi, Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym. J., 1990. 22(5): pp. 355-360.
52. Chen, S.-H., Y. Chang, and K. Ishihara, Reduced blood cell adhesion on polypropylene substrates through a simple surface zwitterionization. Langmuir, 2017. 33(2): pp. 611-621.
53. Azuma, T., R. Ohmori, Y. Teramura, T. Ishizaki, and M. Takai, Nano-structural comparison of 2-methacryloyloxyethyl phosphorylcholine-and ethylene glycol-based surface modification for preventing protein and cell adhesion. Colloids and Surfaces B: Biointerfaces, 2017. 159: pp. 655-661.
54. Feng, W., S. Zhu, K. Ishihara, and J.L. Brash, Adsorption of fibrinogen and lysozyme on silicon grafted with poly (2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Langmuir, 2005. 21(13): pp. 5980-5987.
55. Graziola, F., F. Girardi, R. Di Maggio, E. Callone, E. Miorin, M. Negri, K. Müller, and S. Gross, Three-components organic–inorganic hybrid materials as protective coatings for wood: Optimisation, synthesis, and characterisation. Prog. Org. Coat., 2012. 74(3): pp. 479-490.
56. Mohseni, M., S. Bastani, and A. Jannesari, Influence of silane structure on curing behavior and surface properties of sol–gel based UV-curable organic–inorganic hybrid coatings. Prog. Org. Coat., 2014. 77(7): pp. 1191-1199.
57. Mimura, S., H. Naito, Y. Kanemitsu, K. Matsukawa, and H. Inoue, Optical properties of organic–inorganic hybrid thin films containing polysilane segments prepared from polysilane–methacrylate copolymers. J. Organomet. Chem., 2000. 611(1-2): pp. 40-44.
58. Matsumura, H., M. Kawahara, T. Tanaka, and M. Atsuta, A new porcelain repair system with a silane coupler, ferric chloride, and adhesive opaque resin. Journal of Dental Research, 1989. 68(5): pp. 813-818.
59. Tham, W., W. Chow, and Z.M. Ishak, The effect of 3‐(trimethoxysilyl) propyl methacrylate on the mechanical, thermal, and morphological properties of poly (methyl methacrylate)/hydroxyapatite composites. J. Appl. Polym. Sci., 2010. 118(1): pp. 218-228.
60. Lewis, R.A., Hawley′s condensed chemical dictionary. 2016: John Wiley & Sons.
61. Maçon, A.L., S.J. Page, J.J. Chung, N. Amdursky, M.M. Stevens, J.V. Weaver, J.V. Hanna, and J.R. Jones, A structural and physical study of sol–gel methacrylate–silica hybrids: intermolecular spacing dictates the mechanical properties. Physical Chemistry Chemical Physics, 2015. 17(43): pp. 29124-29133.
62. Cakic, S., C. Lacnjevac, G. Nikolic, J. Stamenkovic, M.B. Rajkovic, M. Gligoric, and M. Barac, Spectroscopic characteristics of highly selective manganese catalysis in acqueous polyurethane systems. Sensors, 2006. 6(11): pp. 1708-1720.
63. Coffinier, Y., G. Piret, M.R. Das, and R. Boukherroub, Effect of surface roughness and chemical composition on the wetting properties of silicon-based substrates. Comptes Rendus Chimie, 2013. 16(1): pp. 65-72.
64. Xu, H., M.M. Ferreira, and S.C. Heilshorn, Small-molecule axon-polarization studies enabled by a shear-free microfluidic gradient generator. Lab on a Chip, 2014. 14(12): pp. 2047-2056.
65. Zhu, K., D. Hou, Y. Fei, B. Peng, Z. Wang, W. Xu, B. Zhu, L.-L. Li, and H. Wang, Thermosensitive Hydrogel Interface Switching from Hydrophilic Lubrication to Infection Defense. ACS Applied Bio Materials, 2019. 2(8): pp. 3582-3590.
66. Acton, B.O., G.G. Ting, P.J. Shamberger, F.S. Ohuchi, H. Ma, and A.K.-Y. Jen, Dielectric surface-controlled low-voltage organic transistors via n-alkyl phosphonic acid self-assembled monolayers on high-k metal oxide. ACS applied materials & interfaces, 2010. 2(2): pp. 511-520.
67. Mittler-Neher, S., J. Spinke, M. Liley, G. Nelles, M. Weisser, R. Back, G. Wenz, and W. Knoll, Spectroscopic and surface-analytical characterization of self-assembled layers on Au. Biosens. Bioelectron., 1995. 10(9-10): pp. 903-916.
68. Dos Santos, F.C., S.V. Harb, M.-J. Menu, V. Turq, S.H. Pulcinelli, C.V. Santilli, and P. Hammer, On the structure of high performance anticorrosive PMMA–siloxane–silica hybrid coatings. RSC advances, 2015. 5(129): pp. 106754-106763.
69. Blasco, E., J. Müller, P. Müller, V. Trouillet, M. Schön, T. Scherer, C. Barner‐Kowollik, and M. Wegener, Fabrication of conductive 3D gold‐containing microstructures via direct laser writing. Adv. Mater., 2016. 28(18): pp. 3592-3595.
70. Ravi, S., S. Zhang, Y.-R. Lee, K.-K. Kang, J.-M. Kim, J.-W. Ahn, and W.-S. Ahn, EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2018. 67: pp. 210-218.
71. Ederer, J., P. Janoš, P. Ecorchard, J. Tolasz, V. Štengl, H. Beneš, M. Perchacz, and O. Pop-Georgievski, Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation. RSC advances, 2017. 7(21): pp. 12464-12473.
72. Fu, Y., H. Du, S. Zhang, and W. Huang, XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate. Materials Science and Engineering: A, 2005. 403(1-2): pp. 25-31.
73. Ramin, M.A., G. Le Bourdon, K. Heuze, M. Degueil, T. Buffeteau, B. Bennetau, and L. Vellutini, Epoxy-terminated self-assembled monolayers containing internal urea or amide groups. Langmuir, 2015. 31(9): pp. 2783-2789.
74. Zhang, H., C. Bian, J.K. Jackson, F. Khademolhosseini, H.M. Burt, and M. Chiao, Fabrication of robust hydrogel coatings on polydimethylsiloxane substrates using micropillar anchor structures with chemical surface modification. ACS applied materials & interfaces, 2014. 6(12): pp. 9126-9133.
75. Salon, M.-C.B., M. Abdelmouleh, S. Boufi, M.N. Belgacem, and A. Gandini, Silane adsorption onto cellulose fibers: Hydrolysis and condensation reactions. J. Colloid Interface Sci., 2005. 289(1): pp. 249-261.
76. Meillan, M., T. Buffeteau, G. Le Bourdon, L. Thomas, M. Degueil, K. Heuzé, B. Bennetau, and L. Vellutini, Mixed Self‐Assembled Monolayers with Internal Urea Group on Silica Surface. ChemistrySelect, 2017. 2(35): pp. 11868-11874.
77. Lindberg, R., G. Sundholm, G. Øye, and J. Sjöblom, A new method for following the kinetics of the hydrolysis and condensation of silanes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998. 135(1-3): pp. 53-58.
78. Torry, S., A. Campbell, A. Cunliffe, and D. Tod, Kinetic analysis of organosilane hydrolysis and condensation. Int. J. Adhes. Adhes., 2006. 26(1-2): pp. 40-49.
79. Ogasawara, T., A. Yoshino, H. Okabayashi, and C. O′Connor, Polymerization process of the silane coupling agent 3-aminopropyltriethoxy silane–1H NMR spectra and kinetics of ethanol release. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001. 180(3): pp. 317-322.
80. Huber, M.P., S. Kelch, and H. Berke, FTIR investigations on hydrolysis and condensation reactions of alkoxysilane terminated polymers for use in adhesives and sealants. Int. J. Adhes. Adhes., 2016. 64: pp. 153-162.
81. Lee, A.S., S.-S. Choi, K.-Y. Baek, and S.S. Hwang, Hydrolysis kinetics of a sol-gel equilibrium yielding ladder-like polysilsesquioxanes. Inorg. Chem. Commun., 2016. 73: pp. 7-11.
82. Chen, S.-L., P. Dong, G.-H. Yang, and J.-J. Yang, Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate. Industrial & engineering chemistry research, 1996. 35(12): pp. 4487-4493.
83. Zhai, Q., C. Zhou, S. Zhao, C. Peng, and Y. Han, Kinetic study of alkoxysilane hydrolysis under acidic conditions by Fourier transform near infrared spectroscopy combined with partial least-squares model. Industrial & Engineering Chemistry Research, 2014. 53(35): pp. 13598-13609.
84. Bogush, G. and C. Zukoski Iv, Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides. J. Colloid Interface Sci., 1991. 142(1): pp. 1-18.
85. Bogush, G. and C. Zukoski Iv, Uniform silica particle precipitation: An aggregative growth model. J. Colloid Interface Sci., 1991. 142(1): pp. 19-34.
86. Savard, S., L.P. Blanchard, J. Léonard, and R. Prud′Homme, Hydrolysis and condensation of silanes in aqueous solutions. Polym. Compos., 1984. 5(4): pp. 242-249.
87. Yanagisawa, Y., Y. Nan, K. Okuro, and T. Aida, Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science, 2018. 359(6371): pp. 72-76.
88. Malcolm, P.S., Polymer chemistry: an introduction. 1990, Oxford University Press, New York.
89. Münch, A.S., M. Wölk, M. Malanin, K.-J. Eichhorn, F. Simon, and P. Uhlmann, Smart functional polymer coatings for paper with anti-fouling properties. Journal of Materials Chemistry B, 2018. 6(5): pp. 830-843.
90. Xu, Y., M. Takai, and K. Ishihara, Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces. Biomaterials, 2009. 30(28): pp. 4930-4938.
91. Marshall, A., P. Munro, and G. Trägårdh, The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: a literature review. Desalination, 1993. 91(1): pp. 65-108.
92. Rana, D. and T. Matsuura, Surface modifications for antifouling membranes. Chemical reviews, 2010. 110(4): pp. 2448-2471.
93. Singha, P., J. Pant, M.J. Goudie, C.D. Workman, and H. Handa, Enhanced antibacterial efficacy of nitric oxide releasing thermoplastic polyurethanes with antifouling hydrophilic topcoats. Biomaterials science, 2017. 5(7): pp. 1246-1255.
94. Rechendorff, K., M.B. Hovgaard, M. Foss, V. Zhdanov, and F. Besenbacher, Enhancement of protein adsorption induced by surface roughness. Langmuir, 2006. 22(26): pp. 10885-10888.
95. Akkas, T., C. Citak, A. Sirkecioglu, and F.S. Güner, Which is more effective for protein adsorption: surface roughness, surface wettability or swelling? Case study of polyurethane films prepared from castor oil and poly (ethylene glycol). Polym. Int., 2013. 62(8): pp. 1202-1209.
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2022-9-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明