博碩士論文 86344005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:145 、訪客IP:18.226.82.122
姓名 張政元(Cheng-Yuan Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 加強型數位濾波器設計於主動式噪音控制之應用
(Enhanced Digital Filter Design for Active Noise Control)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 非匹配不確定可變結構系統之分析與設計★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善
★ 無轉軸偵測元件之無刷直流馬達驅動器研製★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製
★ 感應馬達之新型直接轉矩控制研究★ 同步磁阻馬達之性能分析及運動控制研究
★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制★ 感應馬達之直接轉矩控制之低轉速驅動補償策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以主動噪音控制系統為基礎,分別提出相位補償與模糊適應控制法則以加強型數位濾波器的性能,並增進主動噪音控制系統的控制能力。首先,本論文將針對噪音控制系統的主體結構以及系統說明,做詳細的介紹。其次,本論文針對目前主動式噪音控制法在控制性能上的限制與瓶頸,分別提出加強型濾波器設計的解決方案;而在控制法則部分,則針對使用數位濾波器設計時常發生的量化及捨入誤差,提出相位補償的概念,此外,針對目前常用的噪音控制法皆需經過相當複雜數學運算的缺點,本論文亦提出一個結合模糊控制理論與適應信號處理的自我調適系統,以簡化控制器的設計並加強系統效能。最後,本論文則分別以實驗驗證與數值模擬的方式,來探討上述所提方法實際應用的可行性。
摘要(英) In this dissertation, the enhanced digital filter designing techniques for the applications of active noise control are proposed. These techniques include two approaches; phase compensated scheme and fuzzy adaptive scheme. One can utilize the proposed schemes on the conventional digital filter designing techniques to enhance the performances of active noise cancellation. The main merit of these approaches is to overcome the nonlinear distortion effect, which arise from the analog devices and quantization, and then help to improve the ability of noise reduction.
Secondly, the proposed method can save the computing complexity in realizing an active noise control system. Traditionally, one has to identify the system dynamics of the noise control system including circular duct, speaker, microphone and peripheral electronic device in advance to design a noise controller. This dissertation proposes the fuzzy adaptive algorithm, which can self-tune the free parameters in the active controller during the noise control process. Hence, there is not any plant information that needs to be identified. Besides, the proposed approach can process both the numerical and linguistic information, which helps to design an active noise control system easily.
Several experiments and simulations are used to demonstrate the proposed approaches in an acoustic duct. It is proved that using enhanced digital filter techniques, the noise reduction abilities of broadband noises as well as narrowband noises are improved. Besides, the designing procedure of active noise control system is also simplified.
關鍵字(中) ★ 主動噪音控制
★ 相位補償
★ 模糊適應控制
關鍵字(英) ★ Active Noise Control
★ Phase Compensation
★ Fuzzy Adaptive Control
論文目次 Cover
中文目錄
摘要
內文一
List of Contents
Abstract
List of Figures
Chatper 1 Introduction
1.1 Motivation and Background
1.2 Review of Previous Works
1.3 Purpose and Contribution
1.4 Organization of the Dissertation
Chapter 2 Problem Formulation
2.1 Active Noise Control System in Duct
2.2 Feedforward and Feedback Control Approaches
Chapter 3 The Phase-Compensated Control Architecture for Enhanced Digital Filter Design
3.1 Modified FIR Filter Approach for Active Noise Control
3.2 Filtered-X LMS (fx-LMS) Scheme Design for Active Noise Control
3.3 Experimental Results with Phase-Compensated Scheme
3.4 Summary
Chapter 4 The Fuzzy-Adaptive Control Architecture for Enhanced Digital Filter Design
4.1 Fuzzy Adaptive Filtered-X Algorithm for Active Noise Control System
4.2 Fuzzy Adaptive Filtered-U Algorithm for Active Noise Control System
4.3 Simulation Results with Fuzzy Adaptive Scheme
4.4 Summary
Chapter 5 Conclusions
References
Author's Information
Publication List
參考文獻 2. A. Oppenheim and R. Schafer, Digital Signal Processing, Prentice-Hall, 1975.
3. A. Roure, "Self-adaptive Broadband Active Sound Control System, " J. Sound and Vibration, Vol. 101, No. 3, pp. 429-441, 1985.
3. A. Roure, "Self-adaptive Broadband Active Sound Control System, " J. Sound and Vibration, Vol. 101, No. 3, pp. 429-441, 1985.
5. B. Widrow, et al.,"Adaptive Noise Canceling: Principles and Application," Proc. IEEE, Vol. 63, No. 12, pp. 1692-1716, 1975.
6. B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice-Hall, 1985.
7. C. C. Lee, "Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Part I, " IEEE Trans. Systems, Man, and Cybernetics, Vol. 20, No. 2, pp. 404-418, 1990.
8. C. F. Ross, "A Demonstration of Active Control of Broadband Sound," J. Sound and Vibration, Vol. 74, No. 3, pp. 411-417, 1981.
9. C. K. Chen, T. D. Chiueh and J. H. Chen, "Broadband Active Noise Control Using a Neural Network," IEICE Trans. Information and System, Vol. E81-D, No. 8, pp. 855-861, 1998.
10. C. T. Lin and C. F. Juang, "An Adaptive Neural Fuzzy Filter and Its Applications," IEEE Trans. Systems, Man and Cybernetics-Part B: Cybernetics, Vol. 27, No. 4, pp. 635-656, 1997.
11. C. T. Lin and C. S. Gerorge Lee, Neural Fuzzy Systems, Prentice-Hall: New Jersey, 1996.
12. D. G. Luenberger, Optimization by Vector Space Methods, Wiley: New York, 1969.
13. D. Nauck, F. Klawonn and R. Kruse, Foundations of Neuro-Fuzzy Systems, Wiley: Chichester, 1997.
14. D. S. Reay and M. W. Dunnigan, "Learning Issues in Model Reference Based Fuzzy Control," IEE Proc.-Control Theory Appl., Vol. 144, No. 6, pp.605-611, 1997.
15. G. B. Chaplin, "Active Attenuation of Recurring Vibrations," U.K. Patent 1-577-322, 1978.
16. G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice-Hall: New Jersey, 1995.
17. H. Janocha and B. Liu, "Simulation Approach and Causality Evaluation for an Active Noise Control System," IEE Proc.-Control Theory Appl., Vol. 145, No. 4, pp. 423-426, 1998.
17. H. Janocha and B. Liu, "Simulation Approach and Causality Evaluation for an Active Noise Control System," IEE Proc.-Control Theory Appl., Vol. 145, No. 4, pp. 423-426, 1998.
19. J. C. Burgess, "Active Adaptive Sound Control in a Duct: a Computer Simulation," J. Acou. Soc. Am., Vol. 70, No. 3, pp.715-726, 1981.
20. J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory, Macmillan: New York, 1992.
20. J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory, Macmillan: New York, 1992.
20. J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory, Macmillan: New York, 1992.
20. J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory, Macmillan: New York, 1992.
20. J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory, Macmillan: New York, 1992.
20. J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory, Macmillan: New York, 1992.
20. J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory, Macmillan: New York, 1992.
27. K. K. Shyu, C. Y. Chang and M. C. Kuo, "Self-tuning Controller with Fuzzy Filtered-X Algorithm," Electronics Letters, Vol. 36, No. 2, pp.182-184, Jan. 2000.
28. K. K. Shyu, C. Y. Chang and T. Z. Chuang, "Active Noise Cancellation with a Fuzzy-Adaptive Filtered-X Algorithm," Int. J. Adaptive Control and Signal Processing, (Revised), 2000.
29. K. K. Shyu, C. Y. Chang and T. Z. Chuang, "Fuzzy-Adaptive Based Filtered-U Algorithm for Active Noise Cancellation," IEE Proc.-Control Theory Appl., (Revised), 2000.
30. L. C. Ludeman, Fundamentals of Digital Signal Processing, Wiley: New York, 1986.
31. L. J. Eriksson, "Development of the Filtered-U Algorithm for Active Noise Control," J. Acou. Soc. Am., Vol. 89, No. 1, pp. 257-265, Jan 1991.
31. L. J. Eriksson, "Development of the Filtered-U Algorithm for Active Noise Control," J. Acou. Soc. Am., Vol. 89, No. 1, pp. 257-265, Jan 1991.
33. L. X. Wang, and J. M. Mendel, "Fuzzy Adaptive Filter, with Application to Nonlinear Channel Equalization," IEEE Trans. Fuzzy Systems, Vol. 1, No. 3, pp. 161-170, 1993.
34. M. A. Matos, "A Fuzzy Filtering Method Applied to Power Distribution Planning," Fuzzy Sets and Systems, Vol. 102, No. 1, pp. 53-58, 1999.
35. M. A. Swinbanks, "The Active Control of Sound Propagation in Long Ducts," J. Sound and Vibration, Vol. 27, No. 3, pp. 411-436, 1973.
35. M. A. Swinbanks, "The Active Control of Sound Propagation in Long Ducts," J. Sound and Vibration, Vol. 27, No. 3, pp. 411-436, 1973.
35. M. A. Swinbanks, "The Active Control of Sound Propagation in Long Ducts," J. Sound and Vibration, Vol. 27, No. 3, pp. 411-436, 1973.
38. M. Tomizuka, "Zero-phase Error Tracking Algorithm for Digital Control," ASME J. Dynamic Systems, Measurement and Control, Vol. 109, No. 1, pp. 65-68, 1987.
38. M. Tomizuka, "Zero-phase Error Tracking Algorithm for Digital Control," ASME J. Dynamic Systems, Measurement and Control, Vol. 109, No. 1, pp. 65-68, 1987.
40. P. A. Nelson, S. J. Elliott. Active Control of Sound, Academic: New York, 1990.
41. P. L. Feintuch, "An Adaptive Recursive LMS Filter," Proc. IEEE, Vol. 64, No. 11, pp. 1622-1624, 1976.
42. P. Lueg, "Process of Silencing Sound Oscillator," U.S. Patent 2043416, 1936.
42. P. Lueg, "Process of Silencing Sound Oscillator," U.S. Patent 2043416, 1936.
44. Q. Shen and A. S. Spanias, "Time- and Frequency-Domain X-block Least-mean-square Algorithms for Active Noise Control," Noise Control Eng. J., Vol. 44, No. 6, pp. 281-293, 1996.
45. R. Chassaing, Digital Signal Processing with TMS320C25, Wiley: Canada, 1992.
46. R. J. Schilling, P. Zulch, J. J. Carroll and R. Mukundan, "Active Noise Control Using a Dual Feed-forward Approach," Int. J. Systems and Science, Vol. 27, No. 10, pp. 905-915, 1996.
47. S. Haykin, Adaptive Filter Theory, Prentice-Hall: Englewood Cliffs, 1991.
48. S. M. Kuo and D. Vijayan, "A Secondary Path Modeling Technique for Active Noise Control Systems," IEEE Trans. Speech and Audio Processing, Vol. 5, No. 4, pp. 374-377, 1997.
49. S. M. Kuo and M. Tahernezhadi, "Frequency-Domain Periodic Active Noise Control and Equalization," IEEE Trans. Speech and Audio Processing, Vol. 5, No. 4, pp. 348-358, 1997.
50. S. Yonghong, P. Saratchandran and N. Sundararajan, "Minimal Resource Allocation Network for Adaptive Noise Cancellation," Electronics Letters, Vol. 35, No. 9, pp.726-728, 1999.
51. T. C. Tsao, "Optimal Feed-forward Digital Tracking Controller Design," ASME J. Dynamic System, Measurement and Control, Vol. 2, No. 6, pp. 583-592, 1994.
52. T. Takagi and M. Sugeno, "Fuzzy Identification of Systems and Its Applications to Modeling and Control," IEEE Trans. Systems, Man and Cybernetics, Vol. SMC-15, No. 1, pp.116-132, 1985.
53. Y. J. Lee, "Generalized Fuzzy Filter and Limit Structure," Fuzzy Sets and Systems, Vol. 104, No. 3, pp. 415-422, 1999.
56. W. F. Xie and A. B. Rad, "Fuzzy On-line Identification of SISO nonlinear systems," Fuzzy Sets and Systems, Vol. 107, No. 3, pp. 323-334, 1999.
指導教授 徐國鎧(Kuo-Kai Shyu) 審核日期 2000-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明