摘要(英) |
The Lupus molecular cloud complex, at a distance of about 160 pc, is one of the nearest star-forming regions. Of the nine identified clouds, four are known to have ongoing star formation, with the Lupus 3 cloud being the most active. We present here identification of the young stellar objects from embedded proto-stars to planetary disk-bearing classical T Tauri stars in Lupus 3, selected by using near-infrared 2MASS, and mid- to far-infrared ALLWISE colors. The young stellar population in Lupus 3 has been well censored; of the two Class I (proto-stars) and 42 Class II objects (classical T Tauri stars) that we found, indeed all are known in the literature, except one, WISEA J160441.81−391315.4, not recognized previously. This object has distinct infrared excess, is an H-alpha emitter, and shares the same Gaia EDR3 proper motion and parallax as other young members, indicative of young membership. The star is located some 1 deg from the dense molecular core, traced by the 13CO observations, with which other young stellar objects are crowded. The kinematics suggest the star might have been a runaway member 1–2 Myr ago from the cluster, though at the moment no definite mechanism is inferred. |
參考文獻 |
[1] J. M. Alcalá et al. “X-shooter spectroscopy of young stellar objects. IV. Ac- cretion in low-mass stars and substellar objects in Lupus”. In: A&A 561, A2 (Jan. 2014), A2. DOI: 10 . 1051 / 0004 - 6361 / 201322254. arXiv: 1310.2069 [astro-ph.SR].
[2] Philippe Andre, Derek Ward-Thompson, and Mary Barsony. “Submillime- ter Continuum Observations of rho Ophiuchi A: The Candidate Protostar VLA 1623 and Prestellar Clumps”. In: ApJ 406 (Mar. 1993), p. 122. DOI: 10.1086/172425.
[3] C. A. L. Bailer-Jones et al. “Estimating Distances from Parallaxes. V. Ge- ometric and Photogeometric Distances to 1.47 Billion Stars in Gaia Early Data Release 3”. In: AJ 161.3, 147 (Mar. 2021), p. 147. DOI: 10.3847/ 1538-3881/abd806. arXiv: 2012.05220 [astro-ph.SR].
[4] M. S. Bessell and J. M. Brett. “JHKLM Photometry: Standard Systems, Passbands, and Intrinsic Colors”. In: PASP 100 (Sept. 1988), p. 1134. DOI: 10.1086/132281.
[5] L. Cambrésy. “Mapping of the extinction in giant molecular clouds using optical star counts”. In: A&A 345 (May 1999), pp. 965–976. arXiv: astro- ph/9903149 [astro-ph].
[6] F. Comerón. “The Lupus Clouds”. In: Handbook of Star Forming Regions, Volume II. Ed. by B. Reipurth. Vol. 5. 2008, p. 295.
[7] R. M. Cutri et al. Explanatory Supplement to the WISE All-Sky Data Release Products. Explanatory Supplement to the WISE All-Sky Data Release Prod- ucts. Mar. 2012.
[8] Ramiro de la Reza et al. “Discovery of New Isolated T Tauri Stars”. In: ApJL 343 (Aug. 1989), p. L61. DOI: 10.1086/185511.
[9] S. M. Dougherty et al. “Near-IR excess of Be stars.” In: A&A 290 (Oct. 1994), pp. 609–622.
[10] R. Edelson and M. Malkan. “Reliable Identifications of Active Galactic Nu- clei from the WISE, 2MASS, and ROSAT All-Sky Surveys”. In: ApJ 751.1, 52 (May 2012), p. 52. DOI: 10.1088/0004-637X/751/1/52. arXiv: 1203.1942 [astro-ph.CO].
[11] Z. Eker et al. “Interrelated main-sequence mass-luminosity, mass-radius, and mass-effective temperature relations”. In: MNRAS 479.4 (Oct. 2018), pp. 5491–5511. DOI: 10.1093/mnras/sty1834. arXiv: 1807.02568 [astro-ph.SR].
[12] D. A. Frail, W. M. Goss, and J. B. Z. Whiteoak. “The Radio Lifetime of Supernova Remnants and the Distribution of Pulsar Velocities at Birth”. In: ApJ 437 (Dec. 1994), p. 781. DOI: 10.1086/175038. arXiv: astro- ph/9407031 [astro-ph].
[13] A. Frasca et al. “X-shooter spectroscopy of young stellar objects in Lupus. Atmospheric parameters, membership, and activity diagnostics”. In: A&A 602, A33 (June 2017), A33. DOI: 10.1051/0004-6361/201630108. arXiv: 1703.01251 [astro-ph.SR].
[14] Gaia Collaboration, A. G. A. Brown, et al. “Gaia Early Data Release 3. Summary of the contents and survey properties”. In: A&A 649, A1 (May 2021), A1. DOI: 10.1051/0004-6361/202039657. arXiv: 2012.01533 [astro-ph.GA].
[15] Gaia Collaboration, T. Prusti, et al. “The Gaia mission”. In: A&A 595, A1 (Nov. 2016), A1. DOI: 10.1051/0004-6361/201629272. arXiv: 1609. 04153 [astro-ph.IM].
[16] P. Gondoin. “X-ray emission from T Tauri stars in the Lupus 3 star-forming region”. In: A&A 454.2 (Aug. 2006), pp. 595–607. DOI: 10.1051/0004- 6361:20054350.
[17] R. A. Gutermuth et al. “A Spitzer Survey of Young Stellar Clusters Within One Kiloparsec of the Sun: Cluster Core Extraction and Basic Structural Analysis”. In: ApJS 184.1 (Sept. 2009), pp. 18–83. DOI: 10.1088/0067- 0049/184/1/18. arXiv: 0906.0201 [astro-ph.SR].
[18] Atsushi Hara et al. “A Study of Dense Cloud Cores and Star Formation in Lupus: C18O J = 1-0 Observations with NANTEN”. In: PASJ 51 (Dec. 1999), pp. 895–910. DOI: 10.1093/pasj/51.6.895.
[19] Jesús Hernández et al. “Herbig Ae/Be Stars in nearby OB Associations”. In: AJ 129.2 (Feb. 2005), pp. 856–871. DOI: 10 . 1086 / 426918. arXiv: astro-ph/0410494 [astro-ph].
[20] Sarah M. R. Jeffreson and J. M. Diederik Kruijssen. “A general theory for the lifetimes of giant molecular clouds under the influence of galactic dy- namics”. In: MNRAS 476.3 (May 2018), pp. 3688–3715. DOI: 10.1093/ mnras/sty594. arXiv: 1803.01850 [astro-ph.GA].
[21] X. P. Koenig and D. T. Leisawitz. “A Classification Scheme for Young Stel- lar Objects Using the Wide-field Infrared Survey Explorer AllWISE Cata- log: Revealing Low-density Star Formation in the Outer Galaxy”. In: ApJ 791.2, 131 (Aug. 2014), p. 131. DOI: 10.1088/0004-637X/791/2/131. arXiv: 1407.2262 [astro-ph.GA].
[22] Charles J. Lada. “Star formation: from OB associations to protostars.” In: Star Forming Regions. Ed. by Manuel Peimbert and Jun Jugaku. Vol. 115. Jan. 1987, p. 1.
[23] Charles J. Lada. “Star formation: from OB associations to protostars.” In: Star Forming Regions. Ed. by Manuel Peimbert and Jun Jugaku. Vol. 115. Jan. 1987, p. 1.
[24] D. A. Ladeyschikov et al. “The link between gas and stars in the S254-S258 star-forming region”. In: MNRAS 506.3 (Sept. 2021), pp. 4447–4464. DOI: 10.1093/mnras/stab1821. arXiv: 2106.12789 [astro-ph.GA].
[25] K. L. Luhman. “A Gaia Survey for Young Stars Associated with the Lupus Clouds”. In: AJ 160.4, 186 (Oct. 2020), p. 186. DOI: 10.3847/1538-3881/ abb12f. arXiv: 2009.05123 [astro-ph.SR].
[26] C. F. Manara et al. “Gaia DR2 view of the Lupus V-VI clouds: The can- didate diskless young stellar objects are mainly background contami- nants”. In: A&A 615, L1 (July 2018), p. L1. DOI: 10.1051/0004-6361/ 201833383. arXiv: 1806.04943 [astro-ph.SR].
[27] Elizabeth Melton. “A Random Forest Approach to Identifying Young Stel- lar Object Candidates in the Lupus Star-forming Region”. In: AJ 159.5, 200 (May 2020), p. 200. DOI: 10.3847/1538-3881/ab72ac. arXiv: 2003. 10575 [astro-ph.SR].
[28] Bruno Merın et al. “The Spitzer c2d Survey of Large, Nearby, Interstel- lar Clouds. XI. Lupus Observed with IRAC and MIPS”. In: ApJS 177.2 (Aug. 2008), pp. 551–583. DOI: 10.1086/588042. arXiv: 0803.1504 [astro-ph].
[29] Michael R. Meyer, Nuria Calvet, and Lynne A. Hillenbrand. “Intrinsic Near-Infrared Excesses of T Tauri Stars: Understanding the Classical T Tauri Star Locus”. In: AJ 114 (July 1997), pp. 288–300. DOI: 10.1086/ 118474.
[30] P. C. Myers and A. A. Goodman. “On the Dispersion in Direction of In- terstellar Polarization”. In: ApJ 373 (June 1991), p. 509. DOI: 10.1086/ 170070.
[31] Quentin A. Parker et al. “The AAO/UKST SuperCOSMOS Hα survey”. In: MNRAS 362.2 (Sept. 2005), pp. 689–710. DOI: 10.1111/j.1365- 2966.2005.09350.x. arXiv: astro-ph/0506599 [astro-ph].
[32] S. Röser et al. “PPM-Extended (PPMX) - a catalogue of positions and proper motions”. In: A&A 488.1 (Sept. 2008), pp. 401–408. DOI: 10.1051/ 0004-6361:200809775. arXiv: 0806.1009 [astro-ph].
[33] K. L. J. Rygl et al. “Recent star formation in the Lupus clouds as seen by Herschel”. In: A&A 549, L1 (Jan. 2013), p. L1. DOI: 10.1051/0004-6361/ 201219511. arXiv: 1211.5232 [astro-ph.GA].
[34] N. N. Samus, O. V. Durlevich, and et al. “VizieR Online Data Catalog: Combined General Catalogue of Variable Stars (Samus+ 2004)”. In: VizieR Online Data Catalog, II/250 (Nov. 2004), pp. II/250.
[35] R. D. Schwartz. “A survey of southern dark clouds for Herbig-Haro ob- jects and H-alpha emission stars.” In: ApJS 35 (Oct. 1977), pp. 161–170. DOI: 10.1086/190473.
[36] Frank H. Shu, Fred C. Adams, and Susana Lizano. “Star formation in molecular clouds: observation and theory.” In: ARA&A 25 (Jan. 1987), pp. 23–81. DOI: 10.1146/annurev.aa.25.090187.000323.
[37] Keivan G. Stassun et al. “The Revised TESS Input Catalog and Candidate Target List”. In: AJ 158.4, 138 (Oct. 2019), p. 138. DOI: 10.3847/1538- 3881/ab3467. arXiv: 1905.10694 [astro-ph.SR].
[38] B. Stelzer et al. “New X-ray detections of Herbig stars”. In: A&A 493.3 (Jan. 2009), pp. 1109–1119. DOI: 10.1051/0004-6361:200810540. arXiv: 0810.1836 [astro-ph].
[39] L. Strüder et al. “The European Photon Imaging Camera on XMM- Newton: The pn-CCD camera”. In: A&A 365 (Jan. 2001), pp. L18–L26. DOI: 10.1051/0004-6361:20000066.
[40] Kengo Tachihara et al. “13CO (J= 1–0) Observations of the Lupus Molecu- lar Clouds”. In: PASJ 48 (June 1996), pp. 489–502. DOI: 10.1093/pasj/ 48.3.489.
[41] M. E. van den Ancker, D. de Winter, and P. S. The. “A possible T Tauri companion to the long-term photometric variable HR 6000.” In: A&A 313 (Sept. 1996), pp. 517–522.
[42] S. L. A. Vieira et al. “Investigation of 131 Herbig Ae/Be Candidate Stars”. In: AJ 126.6 (Dec. 2003), pp. 2971–2987. DOI: 10.1086/379553.
[43] Shu Wang and Xiaodian Chen. “The Optical to Mid-infrared Extinction Law Based on the APOGEE, Gaia DR2, Pan-STARRS1, SDSS, APASS, 2MASS, and WISE Surveys”. In: ApJ 877.2, 116 (June 2019), p. 116. DOI: 10.3847/1538-4357/ab1c61. arXiv: 1904.04575 [astro-ph.GA].
[44] N. Zacharias et al. “The Second US Naval Observatory CCD Astrograph Catalog (UCAC2)”. In: AJ 127.5 (May 2004), pp. 3043–3059. DOI: 10 . 1086/386353. arXiv: astro-ph/0403060 [astro-ph]. |