參考文獻 |
[1] P. Ding, D. Liska, P. Tang, J. Shia, L. Saltz, K. Goodman, R.J. Downey, G.M. Nash, L.K. Temple, P.B. Paty, J.G. Guillem, W.D. Wong, M.R. Weiser, Pulmonary recurrence predominates after combined modality therapy for rectal cancer: an original retrospective study, Ann Surg 256(1) (2012) 111-6.
[2] M.J. O′Connell, M.E. Campbell, R.M. Goldberg, A. Grothey, J.F. Seitz, J.K. Benedetti, T. Andre, D.G. Haller, D.J. Sargent, Survival following recurrence in stage II and III colon cancer: findings from the ACCENT data set, J Clin Oncol 26(14) (2008) 2336-41.
[3] J.L. Silva, E.A. Cino, I.N. Soares, V.F. Ferreira, A.P.d.O. G, Targeting the Prion-like Aggregation of Mutant p53 to Combat Cancer, Acc Chem Res 51(1) (2018) 181-190.
[4] Y. Takeuchi, N. Kimura, T. Murayama, Y. Machida, D. Iejima, T. Nishimura, M. Terashima, Y. Wang, M. Li, R. Sakamoto, M. Yamamoto, N. Itano, Y. Inoue, M. Ito, N. Yoshida, J.I. Inoue, K. Akashi, H. Saya, K. Fujita, M. Kuroda, I. Kitabayashi, D. Voon, T. Suzuki, A. Tojo, N. Gotoh, The membrane-linked adaptor FRS2beta fashions a cytokine-rich inflammatory microenvironment that promotes breast cancer carcinogenesis, Proc Natl Acad Sci U S A 118(43) (2021).
[5] E. Volkova, B.A. Robinson, J. Willis, M.J. Currie, G.U. Dachs, Marginal effects of glucose, insulin and insulin-like growth factor on chemotherapy response in endothelial and colorectal cancer cells, Oncol Lett 7(2) (2014) 311-320.
[6] K. Simon, Colorectal cancer development and advances in screening, Clin Interv Aging 11 (2016) 967-76.
[7] U.S. Srinivas, J. Dyczkowski, T. Beissbarth, J. Gaedcke, W.Y. Mansour, K. Borgmann, M. Dobbelstein, 5-Fluorouracil sensitizes colorectal tumor cells towards double stranded DNA breaks by interfering with homologous recombination repair, Oncotarget 6(14) (2015) 12574-86.
[8] X.Q. Zhao, Y.F. Zhang, Y.F. Xia, Z.M. Zhou, Y.Q. Cao, Promoter demethylation of nuclear factor-erythroid 2-related factor 2 gene in drug-resistant colon cancer cells, Oncol Lett 10(3) (2015) 1287-1292.
[9] W.C. Tsai, D.Y. Hueng, C.R. Lin, T.C. Yang, H.W. Gao, Nrf2 Expressions Correlate with WHO Grades in Gliomas and Meningiomas, Int J Mol Sci 17(5) (2016).
[10] G.M. DeNicola, P.H. Chen, E. Mullarky, J.A. Sudderth, Z. Hu, D. Wu, H. Tang, Y. Xie, J.M. Asara, K.E. Huffman, Wistuba, II, J.D. Minna, R.J. DeBerardinis, L.C. Cantley, NRF2 regulates serine biosynthesis in non-small cell lung cancer, Nat Genet 47(12) (2015) 1475-81.
[11] Y. Onodera, H. Motohashi, K. Takagi, Y. Miki, Y. Shibahara, M. Watanabe, T. Ishida, H. Hirakawa, H. Sasano, M. Yamamoto, T. Suzuki, NRF2 immunolocalization in human breast cancer patients as a prognostic factor, Endocr Relat Cancer 21(2) (2014) 241-52.
[12] L.M. Aleksunes, M.J. Goedken, C.E. Rockwell, J. Thomale, J.E. Manautou, C.D. Klaassen, Transcriptional regulation of renal cytoprotective genes by Nrf2 and its potential use as a therapeutic target to mitigate cisplatin-induced nephrotoxicity, J Pharmacol Exp Ther 335(1) (2010) 2-12.
[13] W. Shuhua, S. Chenbo, L. Yangyang, G. Xiangqian, H. Shuang, L. Tangyue, T. Dong, Autophagy-related genes Raptor, Rictor, and Beclin1 expression and relationship with multidrug resistance in colorectal carcinoma, Hum Pathol 46(11) (2015) 1752-9.
[14] E. Panieri, P. Telkoparan-Akillilar, S. Suzen, L. Saso, The NRF2/KEAP1 Axis in the Regulation of Tumor Metabolism: Mechanisms and Therapeutic Perspectives, Biomolecules 10(5) (2020).
[15] H. Kitamura, H. Motohashi, NRF2 addiction in cancer cells, Cancer Sci 109(4) (2018) 900-911.
[16] T. Saito, Y. Ichimura, K. Taguchi, T. Suzuki, T. Mizushima, K. Takagi, Y. Hirose, M. Nagahashi, T. Iso, T. Fukutomi, M. Ohishi, K. Endo, T. Uemura, Y. Nishito, S. Okuda, M. Obata, T. Kouno, R. Imamura, Y. Tada, R. Obata, D. Yasuda, K. Takahashi, T. Fujimura, J. Pi, M.S. Lee, T. Ueno, T. Ohe, T. Mashino, T. Wakai, H. Kojima, T. Okabe, T. Nagano, H. Motohashi, S. Waguri, T. Soga, M. Yamamoto, K. Tanaka, M. Komatsu, p62/Sqstm1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming, Nat Commun 7 (2016) 12030.
[17] B. Madajewski, M.A. Boatman, G. Chakrabarti, D.A. Boothman, E.A. Bey, Depleting Tumor-NQO1 Potentiates Anoikis and Inhibits Growth of NSCLC, Mol Cancer Res 14(1) (2016) 14-25.
[18] D. Ross, D. Siegel, NQO1 in protection against oxidative stress, Current Opinion in Toxicology 7 (2018) 67-72.
[19] H.Q. Fan, W. He, K.F. Xu, Z.X. Wang, X.Y. Xu, H. Chen, FTO Inhibits Insulin Secretion and Promotes NF-kappaB Activation through Positively Regulating ROS Production in Pancreatic beta cells, PLoS One 10(5) (2015) e0127705.
[20] G. Gloire, S. Legrand-Poels, J. Piette, NF-kappaB activation by reactive oxygen species: fifteen years later, Biochem Pharmacol 72(11) (2006) 1493-505.
[21] J. Zhang, X. Wang, V. Vikash, Q. Ye, D. Wu, Y. Liu, W. Dong, ROS and ROS-Mediated Cellular Signaling, Oxid Med Cell Longev 2016 (2016) 4350965.
[22] X. Wang, J.Z. Liu, J.X. Hu, H. Wu, Y.L. Li, H.L. Chen, H. Bai, C.X. Hai, ROS-activated p38 MAPK/ERK-Akt cascade plays a central role in palmitic acid-stimulated hepatocyte proliferation, Free Radic Biol Med 51(2) (2011) 539-51.
[23] J. Chen, Z. Zhang, L. Cai, Diabetic cardiomyopathy and its prevention by nrf2: current status, Diabetes Metab J 38(5) (2014) 337-45.
[24] J.W. Kaspar, S.K. Niture, A.K. Jaiswal, Nrf2:INrf2 (Keap1) signaling in oxidative stress, Free Radic Biol Med 47(9) (2009) 1304-9.
[25] X. Sun, Z. Ou, R. Chen, X. Niu, D. Chen, R. Kang, D. Tang, Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells, Hepatology 63(1) (2016) 173-84.
[26] Y. Ichimura, S. Waguri, Y.S. Sou, S. Kageyama, J. Hasegawa, R. Ishimura, T. Saito, Y. Yang, T. Kouno, T. Fukutomi, T. Hoshii, A. Hirao, K. Takagi, T. Mizushima, H. Motohashi, M.S. Lee, T. Yoshimori, K. Tanaka, M. Yamamoto, M. Komatsu, Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy, Mol Cell 51(5) (2013) 618-31.
[27] C. Meng, J. Zhan, D. Chen, G. Shao, H. Zhang, W. Gu, J. Luo, The deubiquitinase USP11 regulates cell proliferation and ferroptotic cell death via stabilization of NRF2 USP11 deubiquitinates and stabilizes NRF2, Oncogene 40(9) (2021) 1706-1720.
[28] A. Hammad, A. Namani, M. Elshaer, X.J. Wang, X. Tang, "NRF2 addiction" in lung cancer cells and its impact on cancer therapy, Cancer Lett 467 (2019) 40-49.
[29] K. Taguchi, M. Yamamoto, The KEAP1-NRF2 System in Cancer, Front Oncol 7 (2017) 85.
[30] J.I. Kang, D.H. Kim, K.W. Sung, S.M. Shim, H. Cha-Molstad, N.K. Soung, K.H. Lee, J. Hwang, H.G. Lee, Y.T. Kwon, B.Y. Kim, p62-Induced Cancer-Associated Fibroblast Activation via the Nrf2-ATF6 Pathway Promotes Lung Tumorigenesis, Cancers (Basel) 13(4) (2021).
[31] H. Zhu, H. Luo, W. Zhang, Z. Shen, X. Hu, X. Zhu, Molecular mechanisms of cisplatin resistance in cervical cancer, Drug Des Devel Ther 10 (2016) 1885-95.
[32] L. Gao, Y. Morine, S. Yamada, Y. Saito, T. Ikemoto, K. Tokuda, C. Takasu, K. Miyazaki, M. Shimada, Nrf2 signaling promotes cancer stemness, migration, and expression of ABC transporter genes in sorafenib-resistant hepatocellular carcinoma cells, PLoS One 16(9) (2021) e0256755.
[33] Q. Wang, C. Bin, Q. Xue, Q. Gao, A. Huang, K. Wang, N. Tang, GSTZ1 sensitizes hepatocellular carcinoma cells to sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis, Cell Death Dis 12(5) (2021) 426.
[34] L.M. Aleksunes, A.L. Slitt, J.M. Maher, L.M. Augustine, M.J. Goedken, J.Y. Chan, N.J. Cherrington, C.D. Klaassen, J.E. Manautou, Induction of Mrp3 and Mrp4 transporters during acetaminophen hepatotoxicity is dependent on Nrf2, Toxicol Appl Pharmacol 226(1) (2008) 74-83.
[35] G. Das, B.V. Shravage, E.H. Baehrecke, Regulation and function of autophagy during cell survival and cell death, Cold Spring Harb Perspect Biol 4(6) (2012).
[36] M.B. Azad, Y. Chen, S.B. Gibson, Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment, Antioxid Redox Signal 11(4) (2009) 777-90.
[37] F. Li, J. Li, P.H. Wang, N. Yang, J. Huang, J. Ou, T. Xu, X. Zhao, T. Liu, X. Huang, Q. Wang, M. Li, L. Yang, Y. Lin, Y. Cai, H. Chen, Q. Zhang, SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling, Biochim Biophys Acta Mol Basis Dis 1867(12) (2021) 166260.
[38] Y. Tang, F. Ren, X. Cong, Y. Kong, Y. Tian, Y. Xu, J. Fan, Overexpression of ribonuclease inhibitor induces autophagy in human colorectal cancer cells via the Akt/mTOR/ULK1 pathway, Mol Med Rep 19(5) (2019) 3519-3526.
[39] J.M. Rodriguez-Vargas, M.J. Ruiz-Magana, C. Ruiz-Ruiz, J. Majuelos-Melguizo, A. Peralta-Leal, M.I. Rodriguez, J.A. Munoz-Gamez, M.R. de Almodovar, E. Siles, A.L. Rivas, M. Jaattela, F.J. Oliver, ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy, Cell Res 22(7) (2012) 1181-98.
[40] N.C. Chang, Autophagy and Stem Cells: Self-Eating for Self-Renewal, Front Cell Dev Biol 8 (2020) 138.
[41] B. Zhang, R. Hou, Z. Zou, T. Luo, Y. Zhang, L. Wang, B. Wang, Mechanically induced autophagy is associated with ATP metabolism and cellular viability in osteocytes in vitro, Redox Biol 14 (2018) 492-498.
[42] J. Wang, G.S. Wu, Role of autophagy in cisplatin resistance in ovarian cancer cells, J Biol Chem 289(24) (2014) 17163-73.
[43] J.F. Lin, Y.C. Lin, T.F. Tsai, H.E. Chen, K.Y. Chou, T.I. Hwang, Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells, Drug Des Devel Ther 11 (2017) 1517-1533.
[44] Z. Tang, B. Hu, F. Zang, J. Wang, X. Zhang, H. Chen, Nrf2 drives oxidative stress-induced autophagy in nucleus pulposus cells via a Keap1/Nrf2/p62 feedback loop to protect intervertebral disc from degeneration, Cell Death Dis 10(7) (2019) 510.
[45] K. El-Bayoumy, R. Sinha, Mechanisms of mammary cancer chemoprevention by organoselenium compounds, Mutat Res 551(1-2) (2004) 181-97.
[46] D. Hu, Q. Liu, H. Cui, H. Wang, D. Han, H. Xu, Effects of amino acids from selenium-rich silkworm pupas on human hepatoma cells, Life Sci 77(17) (2005) 2098-110.
[47] U. Peters, Y. Takata, Selenium and the prevention of prostate and colorectal cancer, Mol Nutr Food Res 52(11) (2008) 1261-72.
[48] A. Connelly-Frost, C. Poole, J.A. Satia, L.L. Kupper, R.C. Millikan, R.S. Sandler, Selenium, apoptosis, and colorectal adenomas, Cancer Epidemiol Biomarkers Prev 15(3) (2006) 486-93.
[49] M.A. Reeves, P.R. Hoffmann, The human selenoproteome: recent insights into functions and regulation, Cell Mol Life Sci 66(15) (2009) 2457-78.
[50] M.R. Bosl, K. Takaku, M. Oshima, S. Nishimura, M.M. Taketo, Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp), Proc Natl Acad Sci U S A 94(11) (1997) 5531-4.
[51] C.D. Fan, X.Y. Fu, Z.Y. Zhang, M.Z. Cao, J.Y. Sun, M.F. Yang, X.T. Fu, S.J. Zhao, L.R. Shao, H.F. Zhang, X.Y. Yang, B.L. Sun, Selenocysteine induces apoptosis in human glioma cells: evidence for TrxR1-targeted inhibition and signaling crosstalk, Sci Rep 7(1) (2017) 6465.
[52] D.G. Pons, C. Moran, M. Alorda-Clara, J. Oliver, P. Roca, J. Sastre-Serra, Micronutrients Selenomethionine and Selenocysteine Modulate the Redox Status of MCF-7 Breast Cancer Cells, Nutrients 12(3) (2020).
[53] C. Souza, D.A. Monico, A.C. Tedesco, Implications of dichlorofluorescein photoinstability for detection of UVA-induced oxidative stress in fibroblasts and keratinocyte cells, Photochem Photobiol Sci 19(1) (2020) 40-48.
[54] T. Liu, Y.F. Lv, J.L. Zhao, Q.D. You, Z.Y. Jiang, Regulation of Nrf2 by phosphorylation: Consequences for biological function and therapeutic implications, Free Radic Biol Med 168 (2021) 129-141.
[55] E. Habib, K. Linher-Melville, H.-X. Lin, G. Singh, Expression of xCT and activity of system xc− are regulated by NRF2 in human breast cancer cells in response to oxidative stress, Redox Biology 5 (2015) 33-42.
[56] Y.Q. Zang, Y.Y. Feng, Y.H. Luo, Y.Q. Zhai, X.Y. Ju, Y.C. Feng, Y.N. Sheng, J.R. Wang, C.Q. Yu, C.H. Jin, Quinalizarin induces ROSmediated apoptosis via the MAPK, STAT3 and NFkappaB signaling pathways in human breast cancer cells, Mol Med Rep 20(5) (2019) 4576-4586.
[57] J.J. Yoon, J.W. Jeong, E.O. Choi, M.J. Kim, H. Hwang-Bo, H.J. Kim, S.H. Hong, C. Park, D.H. Lee, Y.H. Choi, Protective effects of Scutellaria baicalensis Georgi against hydrogen peroxide-induced DNA damage and apoptosis in HaCaT human skin keratinocytes, EXCLI J 16 (2017) 426-438.
[58] V.T. Bortoluzzi, C.S. Dutra Filho, C.M.D. Wannmacher, Oxidative stress in phenylketonuria-evidence from human studies and animal models, and possible implications for redox signaling, Metab Brain Dis 36(4) (2021) 523-543.
[59] J.R. Treberg, C.L. Quinlan, M.D. Brand, Evidence for Two Sites of Superoxide Production by Mitochondrial NADH-Ubiquinone Oxidoreductase (Complex I), Journal of Biological Chemistry 286(31) (2011) 27103-27110.
[60] S. Vega-Rubin-de-Celis, The Role of Beclin 1-Dependent Autophagy in Cancer, Biology (Basel) 9(1) (2019).
[61] R.C. Wang, Y. Wei, Z. An, Z. Zou, G. Xiao, G. Bhagat, M. White, J. Reichelt, B. Levine, Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation, Science 338(6109) (2012) 956-9.
[62] X. Shi, Y. Li, J. Hu, B. Yu, Tert-butylhydroquinone attenuates the ethanol-induced apoptosis of and activates the Nrf2 antioxidant defense pathway in H9c2 cardiomyocytes, Int J Mol Med 38(1) (2016) 123-30.
[63] J. Gong, H. Xu, Current Perspectives on the Role of Nrf2 in 5-Fluorouracil Resistance in Colorectal Cancer, Anticancer Agents Med Chem 21(17) (2021) 2297-2303.
[64] J.L. Roh, E.H. Kim, H. Jang, D. Shin, Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis, Redox Biol 11 (2017) 254-262.
[65] Y.H. Tong, B. Zhang, Y.Y. Yan, Y. Fan, J.W. Yu, S.S. Kong, D. Zhang, L. Fang, D. Su, N.M. Lin, Dual-negative expression of Nrf2 and NQO1 predicts superior outcomes in patients with non-small cell lung cancer, Oncotarget 8(28) (2017) 45750-45758.
[66] F.T. Ndombera, Anti-cancer agents and reactive oxygen species modulators that target cancer cell metabolism, Pure and Applied Chemistry 89(9) (2017) 1333-1348.
[67] H. Kim, G.R. Lee, J. Kim, J.Y. Baek, Y.J. Jo, S.E. Hong, S.H. Kim, J. Lee, H.I. Lee, S.K. Park, H.M. Kim, H.J. Lee, T.S. Chang, S.G. Rhee, J.S. Lee, W. Jeong, Sulfiredoxin inhibitor induces preferential death of cancer cells through reactive oxygen species-mediated mitochondrial damage, Free Radic Biol Med 91 (2016) 264-74.
[68] S.C. Gupta, D. Hevia, S. Patchva, B. Park, W. Koh, B.B. Aggarwal, Upsides and Downsides of Reactive Oxygen Species for Cancer: The Roles of Reactive Oxygen Species in Tumorigenesis, Prevention, and Therapy, Antioxidants & Redox Signaling 16(11) (2012) 1295-1322.
[69] I.S. Harris, G.M. DeNicola, The Complex Interplay between Antioxidants and ROS in Cancer, Trends Cell Biol 30(6) (2020) 440-451.
[70] D.Y. Lee, M.Y. Song, E.H. Kim, Role of Oxidative Stress and Nrf2/KEAP1 Signaling in Colorectal Cancer: Mechanisms and Therapeutic Perspectives with Phytochemicals, Antioxidants (Basel) 10(5) (2021).
[71] K. Aquilano, S. Baldelli, M.R. Ciriolo, Glutathione: new roles in redox signaling for an old antioxidant, Front Pharmacol 5 (2014) 196.
[72] S. Cao, F.A. Durrani, K. Tóth, Y.M. Rustum, Se-methylselenocysteine offers selective protection against toxicity and potentiates the antitumour activity of anticancer drugs in preclinical animal models, British Journal of Cancer 110(7) (2014) 1733-1743.
[73] J.C. Wu, F.Z. Wang, M.L. Tsai, C.Y. Lo, V. Badmaev, C.T. Ho, Y.J. Wang, M.H. Pan, Se-Allylselenocysteine induces autophagy by modulating the AMPK/mTOR signaling pathway and epigenetic regulation of PCDH17 in human colorectal adenocarcinoma cells, Mol Nutr Food Res 59(12) (2015) 2511-22.
[74] C. Porta, C. Paglino, A. Mosca, Targeting PI3K/Akt/mTOR Signaling in Cancer, Frontiers in Oncology 4 (2014).
[75] M. Mauthe, I. Orhon, C. Rocchi, X. Zhou, M. Luhr, K.-J. Hijlkema, R.P. Coppes, N. Engedal, M. Mari, F. Reggiori, Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion, Autophagy 14(8) (2018) 1435-1455.
[76] A.L. Eggler, E. Small, M. Hannink, A.D. Mesecar, Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1, Biochem J 422(1) (2009) 171-80.
[77] Q. Zhang, Z.Y. Zhang, H. Du, S.Z. Li, R. Tu, Y.F. Jia, Z. Zheng, X.M. Song, R.L. Du, X.D. Zhang, DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer, Cell Death Differ 26(11) (2019) 2300-2313.
[78] M.M. Silva, C.R.R. Rocha, G.S. Kinker, A.L. Pelegrini, C.F.M. Menck, The balance between NRF2/GSH antioxidant mediated pathway and DNA repair modulates cisplatin resistance in lung cancer cells, Scientific Reports 9(1) (2019).
[79] V.I. Lushchak, Glutathione homeostasis and functions: potential targets for medical interventions, J Amino Acids 2012 (2012) 736837. |