博碩士論文 108821611 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:110 、訪客IP:13.59.197.237
姓名 娜其菈(KUN ROHMATAN NAZILAH)  查詢紙本館藏   畢業系所 生命科學系
論文名稱
(Functional Repurposing of C-Ala Domains)
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
★ Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins★ Recognition of tRNA His isoacceptors by human HisRS isoforms
★ Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P★ Functional characterization of a noncanonical ProRS in Toxoplasma gondii
★ tRNA aminoacylation by a naturally occurring mini-AlaRS★ Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase
★ 探討Alanyl-tRNA synthetase的演化及專一性★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討
★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能★ 探討酵母菌Valyl-tRNA synthetase的生化活性
★ 酵母菌轉譯起始機制的研究★ 酵母菌GRS1基因的轉譯起始機制之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) alanyl-tRNA synthetase(丙胺酸-tRNA合成酶)是至今唯一仍保留其
原型結構的胺基酸-tRNA合成酶 (aminoacyl-tRNA synthetase)。AlaRS 原型結
構由催化、tRNA辨認、編輯和 C-Ala 結構區域共同組成。在 AlaRS 的四個
結構區域中,C-Ala 的蛋白質序列變異最大,因此在演化過程中,伴隨著功
能上的轉變。大腸桿菌C-Ala 強力結合 tRNA ,且在胺醯化扮演重要功能,
人類C-Ala 強力結合DNA,但是在胺醯化反應中卻是可有可無。為了進一步
了解C-Ala的功能及演化,我們研究及分析二個演化上疏離的低等真核生物
C-Ala的核酸結合能力。我們發現酵母菌Saccharomyces cerevisiae的 C-Ala與
tRNAAla 有很強的結合能力,但是不與 DNA 結合,在胺醯化反應中扮演重要
角色,這個特性與大腸桿菌 C-Ala 相似;然而黏菌Dictyostelium discoideum
C-Ala 則可以同時結合tRNAAla與DNA,且在胺醯化反應中扮演重要功能,
這個特性與線蟲 C-Ala 相似。這些結果顯示,C-Ala由原核演化到真核過程
中,它的功能也由tRNA結合逐漸演變成DNA結合,而一些真核細胞的C-Ala
可能可以同時結合tRNAAla及DNA
摘要(英) AlaRS is the only aminoacyl-tRNA synthetase (aaRS) that still retains a
conserved prototype structure. AlaRS consists of catalytic, tRNA-recognition,
editing, and C-Ala domains. Among these four domains, C-Ala is highly diverged
in sequence. E. coli C-Ala robustly binds tRNA and plays an important role in
dimerization and aminoacylation, while human C-Ala robustly binds DNA and is
dispensable for aminoacylation. Paradoxically, C. elegans (nematode) C-Ala
robustly binds both tRNA and DNA and plays an important role in aminoacylation.
To gain further insight into the evolution of C-Ala, we explored the nucleic acidbinding properties of C-Ala domains obtained from distantly-related lower
eukaryotes. Our data showed that Saccharomyces cerevisiae C-Ala binds tRNAAla
but not DNA and plays an important role in aminoacylation, a feature similar to E.
coli C-Ala, whereas Dictyostelium discoideum (slime mold) C-Ala binds both
tRNAAla and DNA and plays an important role in aminoacylation, a feature similar
to C. elegans C-Ala. It thus appears that as prokaryotes evolved to eukaryotes, CAla has been repurposed from mediating tRNAAla binding to DNA binding, with
certain eukaryotes binding to both ligands.
關鍵字(中) ★ alanyl-tRNA synthetase
★ C-Ala
★ 演化
★ 蛋白質合成
★ 轉譯
關鍵字(英) ★ alanyl-tRNA synthetase
★ C-Ala
★ evolution
★ protein synthesis
★ translation
論文目次 TABLE OF CONTENT
ABSTRACT (in Chinese) i
ABSTRACT ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENT iv
LIST OF FIGURES vi
ABBREVIATION vii
CHAPTER I INTRODUCTION 1
1.1 Aminoacyl tRNA synthetases 1
1.2 Alanyl-tRNA synthetase 2
1.3 C-Ala functions in several organisms 3
1.4 Specific aim 5
CHAPTER II MATERIALS and METHODS 6
2.1 Plasmid construction 6
2.2 Purification of full length of AlaRS, AlaRS (ΔC-Ala), and C-Ala domain of
slime mold 7
2.3 In vitro transcription of tRNAAla 8
2.4 5’ -end labeling of tRNA with γ-32P ATP 8
2.5 Nucleic binding assay 9
2.6 Aminoacylation 9
2.7 Phylogenetic Analyses 9
CHAPTER III RESULT 11
3.1 Phylogenetic tree of C-Ala domain 11
3.2 Yeast C-Ala strongly binds to tRNA but poorly binds to DNA 11
3.3 Slime mold AlaRSc (ΔC-Ala) was successfully purified with the purity level
similar to the wild type enzyme 12
3.4 Slime mold AlaRSc (ΔC-Ala) failed to charge DdtRNAnAla 13
3.5 Slime mold C-Ala protein was successfully purified to the high purity 13
3.6 Slime mold C-Ala strongly binds to tRNA and modestly binds to DNA 14
CHAPTER IV DISCUSSION 16
4.1 Lower eukaryotic C-Ala behaves like prokaryotic C-Ala 16
4.2 In vivo isolated tRNA is better substrate for aminoacylation 18
4.3 Yeast and slime mold AlaRSs possess non-canonical function in DNA
binding domain 18
4.4 Evolutionary relationship of C-Ala 19
LIST OF FIGURES 21
REFERENCES 32
APPENDIX A 34
PRIMER LIST 34
APPENDIX B 35
PLASMID LIST 35
參考文獻 Annesley, S. J., & Fisher, P. R. (2009). Dictyostelium discoideum--a model for
many reasons. Molecular and Cellular Biochemistry 329, 73–91.
Antika, T. R., Chrestella, D. J., Ivanesthi, I. R., Rida, G. R. N., Chen, K. Y., Liu,
F. G., Lee, Y. C., Chen, Y. W., Tseng, Y. K., & Wang, C. C. (2022). Gain
of C-Ala enables AlaRS to target the L-shaped tRNAAla. Nucleic Acids
Res, 50(4), 2190-2200. https://doi.org/10.1093/nar/gkac026
Banerjee, B., & Banerjee, R. (2014). Guanidine hydrochloride mediated
denaturation of E. coli Alanyl-tRNA synthetase: identification of an
inactive dimeric intermediate. Protein J, 33(2), 119-127.
https://doi.org/10.1007/s10930-014-9544-3
Banerjee, B., Ganguli, S., & Banerjee, R. (2020). Biophysical Characterization of
Interaction between E. coli Alanyl-tRNA Synethase with its Promoter
DNA. Protein Ppetide Letters, 27(7), 635-648.
https://doi.org/10.2174/0929866526666191104123229
Bozzaro, S. (2019). The past, present and future of Dictyostelium as a model
system. Int J Dev Biol, 63(8-9-10), 321-331.
https://doi.org/10.1387/ijdb.190128sb
Dégut, C., Monod, A., Brachet, F., Crépin, T., & Tisné, C. (2016). In Vitro/In
Vivo Production of tRNA for X-Ray Studies. Methods mol biol.
https://doi.org/10.1007/978-1-4939-2763-0_4
George, R. A., & Heringa, J. (2003). An analysis of protein domain linkers: their
classification and role in protein folding.
https://doi.org/https://doi.org/10.1093/protein/15.11.871
Guo, M., Chong, Y. E., Beebe, K., Shapiro, R., Yang, X. L., & Schimmel, P.
(2009). The C-Ala domain brings together editing and aminoacylation
functions on one tRNA. Science, 325(5941), 744-747.
https://doi.org/10.1126/science.1174343
Hall, B. G. (2013). Building phylogenetic trees from molecular data with MEGA.
Mol Biol Evol, 30(5), 1229-1235. https://doi.org/10.1093/molbev/mst012
Hellman, L. M., & Fried, M. G. (2007). Electrophoretic mobility shift assay
(EMSA) for detecting protein-nucleic acid interactions. Nat Protoc, 2(8),
1849-1861. https://doi.org/10.1038/nprot.2007.249
Helm, M., Brulé, H., Degoul, F., Cepanec, C., Leroux, J.-P., Giegé, R., &
Catherine Florentz1. (1998). The presence of modified nucleotides is
required for cloverleaf folding of a human mitochondrial tRNA. Nucleic
Acids Res, 26(7).
Hoffmann, A., Erber, L., Betat, H., Stadler, P. F., Morl, M., & Fallmann, J.
(2021). Changes of the tRNA Modification Pattern during the
Development of Dictyostelium discoideum. Noncoding RNA, 7(2).
https://doi.org/10.3390/ncrna7020032
Ibba, M., & Soll, D. (2000). Aminoacyl-tRNA Synthesis (Vol. 69).
Karathia, H., Vilaprinyo, E., Sorribas, A., & Alves, R. (2011). Saccharomyces
cerevisiae as a model organism: a comparative study. PLoS One, 6(2),
e16015. https://doi.org/10.1371/journal.pone.0016015
Liu, C., Sanders, J. M., Pascal, J. M., & Hou, Y. M. (2012). Adaptation to tRNA
acceptor stem structure by flexible adjustment in the catalytic domain of
class I tRNA synthetases. RNA, 18(2), 213-221.41
https://doi.org/10.1261/rna.029983.111
Martin-Gonzalez, J., Montero-Bullon, J. F., & Lacal, J. (2021). Dictyostelium
discoideum as a non-mammalian biomedical model. Microb Biotechnol,
14(1), 111-125. https://doi.org/10.1111/1751-7915.13692
Martinis, S. A., Plateau, P., Cavarelli, J., & Florentz, C. (1999). Aminoacyl-tRNA
synthetases: a family of expanding functions. The EMBO Journal 18,
4591-4596, Article 17.
Motorin, Y., & Helm, M. (2010). tRNA stabilization by modified nucleotides.
Biochemistry, 49(24), 4934-4944. https://doi.org/10.1021/bi100408z
Naganuma, M., Sekine, S., Fukunaga, R., & Yokoyama, S. (2009). Unique protein
architecture of alanyl-tRNA synthetase for aminoacylation, editing, and
dimerization. Proc Natl Acad Sci U S A, 106(21), 8489-8494.
https://doi.org/10.1073/pnas.0901572106
Robinson, C. R., & Sauer, R. T. (1998). Optimizing the stability of single-chain
proteins by linker length and composition mutagenesis. Proc. Natl. Acad.,
95, 5929–5934.
Romby, P., Caillet, J., Ebel, C., Sacerdot, C., Graffe, M., Eyermann, F., Brunel,
C., Moine, H., Ehresmann, C., Ehresmann, B., & Springe, M. (1996). The
expression of E.coIithreonyl-tRNA synthetase is regulated at the
translational level by symmetrical operator-repressor interactions. The
EMBO Journal, 15 (21), 5976-5987.
Stecher, G., Tamura, K., & Kumar, S. (2020). Molecular Evolutionary Genetics
Analysis (MEGA) for macOS. Mol Biol Evol, 37(4), 1237-1239.
https://doi.org/10.1093/molbev/msz312
Sun, L., Song, Y., Blocquel, D., Yang, X. L., & Schimmel, P. (2016). Two crystal
structures reveal design for repurposing the C-Ala domain of human
AlaRS. Proc Natl Acad Sci U S A, 113(50), 14300-14305.
https://doi.org/10.1073/pnas.1617316113
T.J. Bullwinkle., V. D., C. Florentz., K.-M. Forsyth., P.L. Fox., I. Gruic-Sovulj.
M. Guo., J.M. Han., M. Ibba., D. Kim., J.H. Kim., S. Kim., N.H. Kwon.,
S.A. Martinis., H. Nechusthan., M.C. Park., T. Passioura. J.J. Perona., K.
Poruri., E. Razin., J. Reader., H. Schwenzer., M. Sissler., S.H. Son., H.
Suga., S. Tshori., X.-L. Yang., P. Yao., J. Zoll. (2014). Aminoacyl-tRNA
Synthetases in Biology and Medicine (S. Kim, Ed.). Springer.
https://doi.org/10.1007/978-94-017-8701-7
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary
Genetics Analysis Version 11. Mol Biol Evol, 38(7), 3022-3027.
https://doi.org/10.1093/molbev/msab120
Yadavalli, S. S., & Ibba, M. (2012). Quality control in aminoacyl-tRNA synthesis
its role in translational fidelity. Advances in protein chemistry and
structural biology., 86, 1-43.
Zhang, H., Yang, X. L., & Sun, L. (2021). The uniqueness of AlaRS and its
human disease connections. RNA Biol, 18(11), 1501-1511.
https://doi.org/10.1080/15476286.2020.1861803
Zhang, J., & Ferre-D′Amare, A. R. (2016). The tRNA Elbow in Structure,
Recognition and Evolution. Life (Basel), 6(1).
https://doi.org/10.3390/life6010003
指導教授 王健家(Chien-Chia Wang) 審核日期 2022-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明