參考文獻 |
REFERENCES
Antika, T. R., Chrestella, D. J., Ivanesthi, I. R., Rida, G. R. N., Chen, K. Y., Liu, F. G., Lee, Y. C., Chen, Y. W., Tseng, Y. K., & Wang, C. C. (2022). Gain of C-Ala enables AlaRS to target the L-shaped tRNAAla. Nucleic Acids Res, 50(4), 2190-2200. https://doi.org/10.1093/nar/gkac026
Calvo, S. E., Clauser, K. R., & Mootha, V. K. (2016). MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res, 44(D1), D1251-1257. https://doi.org/10.1093/nar/gkv1003
Chang, C. P., Lin, G., Chen, S. J., Chiu, W. C., Chen, W. H., & Wang, C. C. (2008). Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. J Biol Chem, 283(45), 30699-30706. https://doi.org/10.1074/jbc.M805339200
Chang, C. P., Tseng, Y. K., Ko, C. Y., & Wang, C. C. (2012). Alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora arose from duplication of a dual-functional predecessor of mitochondrial origin. Nucleic Acids Res, 40(1), 314-322. https://doi.org/10.1093/nar/gkr724
Chen, S. J., Ko, C. Y., Yen, C. W., & Wang, C. C. (2009). Translational efficiency of redundant ACG initiator codons is enhanced by a favorable sequence context and remedial initiation. J Biol Chem, 284(2), 818-827. https://doi.org/10.1074/jbc.M804378200
Chien, C. I., Chen, Y. W., Wu, Y. H., Chang, C. Y., Wang, T. L., & Wang, C. C. (2014). Functional substitution of a eukaryotic glycyl-tRNA synthetase with an evolutionarily unrelated bacterial cognate enzyme. PLoS One, 9(4), e94659. https://doi.org/10.1371/journal.pone.0094659
Chiu, W. C., Chang, C. P., Wen, W. L., Wang, S. W., & Wang, C. C. (2010). Schizosaccharomyces pombe possesses two paralogous valyl-tRNA synthetase genes of mitochondrial origin. Mol Biol Evol, 27(6), 1415-1424. https://doi.org/10.1093/molbev/msq025
Chong, Y. E., Guo, M., Yang, X. L., Kuhle, B., Naganuma, M., Sekine, S. I., Yokoyama, S., & Schimmel, P. (2018). Distinct ways of G:U recognition by conserved tRNA binding motifs. Proc Natl Acad Sci U S A, 115(29), 7527-7532. https://doi.org/10.1073/pnas.1807109115
Christian, B. E., & Spremulli, L. L. (2012). Mechanism of protein biosynthesis in mammalian mitochondria. Biochim Biophys Acta, 1819(9-10), 1035-1054. https://doi.org/10.1016/j.bbagrm.2011.11.009
Feng, M., & Zhang, H. (2022). Aminoacyl-tRNA Synthetase: A Non-Negligible Molecule in RNA Viral Infection. Viruses, 14(3). https://doi.org/10.3390/v14030613
Figuccia, S., Degiorgi, A., Ceccatelli Berti, C., Baruffini, E., Dallabona, C., & Goffrini, P. (2021). Mitochondrial Aminoacyl-tRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants. Int J Mol Sci, 22(9). https://doi.org/10.3390/ijms22094524
Francklyn, C. S., & Mullen, P. (2019). Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. J Biol Chem, 294(14), 5365-5385. https://doi.org/10.1074/jbc.REV118.002956
Garin, S., Levi, O., Cohen, B., Golani-Armon, A., & Arava, Y. S. (2020). Localization and RNA Binding of Mitochondrial Aminoacyl tRNA Synthetases. Genes (Basel), 11(10). https://doi.org/10.3390/genes11101185
Giegé, R., & Eriani, G. (2014). Transfer RNA Recognition and Aminoacylation by Synthetases. In eLS. https://doi.org/10.1002/9780470015902.a0000531.pub3
Guo, M., Yang, X. L., & Schimmel, P. (2010). New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol, 11(9), 668-674. https://doi.org/10.1038/nrm2956
Hallberg, B. M., & Larsson, N. G. (2014). Making proteins in the powerhouse. Cell Metab, 20(2), 226-240. https://doi.org/10.1016/j.cmet.2014.07.001
Hou, Y. M. (1988). A simple structural feature is a major determinant of the identity of a transfer RNA. Nature, 333, 6.
Igloi, G. L. (2021). The Evolutionary Fate of Mitochondrial Aminoacyl-tRNA Synthetases in Amitochondrial Organisms. Journal of Molecular Evolution, 89(7), 484-493. https://doi.org/10.1007/s00239-021-10019-z
Joseph W. Chihade, K. H., Kiyotaka Shiba,and Paul Schimmel. (1998). Strong Selective Pressure To Use G:U To Mark an RNA Acceptor Stem for Alanine. Biochemistry, 37, 9.
Karin Musier-Forsyth, N. U., Stephen Scaringe, Jennifer Doudna, Rachel Green and Paul Schimmel. (1991). Specificity for Aminoacylation of an RNA Helix: An Unpaired, Exocyclic Amino Group in the Minor Groove. American Association for the Advancement of Science, 253, 3.
Kuhle, B., Chihade, J., & Schimmel, P. (2020). Relaxed sequence constraints favor mutational freedom in idiosyncratic metazoan mitochondrial tRNAs. Nat Commun, 11(1), 969. https://doi.org/10.1038/s41467-020-14725-y
Kumar, A., Aqvist, J., & Satpati, P. (2019). Principles of tRNA(Ala) Selection by Alanyl-tRNA Synthetase Based on the Critical G3.U70 Base Pair. ACS Omega, 4(13), 15539-15548. https://doi.org/10.1021/acsomega.9b01827
Ladoukakis, E. D., & Zouros, E. (2017). Evolution and inheritance of animal mitochondrial DNA: rules and exceptions. J Biol Res (Thessalon), 24, 2. https://doi.org/10.1186/s40709-017-0060-4
Lane, N., & Martin, W. (2010). The energetics of genome complexity. Nature, 467(7318), 929-934. https://doi.org/10.1038/nature09486
Lee, Y. H., Lo, Y. T., Chang, C. P., Yeh, C. S., Chang, T. H., Chen, Y. W., Tseng, Y. K., & Wang, C. C. (2019). Naturally occurring dual recognition of tRNA(His) substrates with and without a universal identity element. RNA Biol, 16(9), 1275-1285. https://doi.org/10.1080/15476286.2019.1626663
Ling, J., Reynolds, N., & Ibba, M. (2009). Aminoacyl-tRNA synthesis and translational quality control. Annu Rev Microbiol, 63, 61-78. https://doi.org/10.1146/annurev.micro.091208.073210
Liu, Y., & Chen, Y. (2020). Mitochondrial tRNA Mutations Associated With Essential Hypertension: From Molecular Genetics to Function. Front Cell Dev Biol, 8, 634137. https://doi.org/10.3389/fcell.2020.634137
Lluı´s Ribas de Pouplana, a. P. S. (1997). Reconstruction of Quaternary Structures of Class II tRNA synthetases by Rational Mutagenensis of a Conserved Domain. Biochemistry, 36(49), 8. https://doi.org/oi: 10.1021/bi971788
Manal A. Swairjo, X.-L. Y., Robert J. Skene,, Francella J. Otero, M. A. L., Duncan E. McRee,, & Lluis Ribas de Pouplana, a. P. S. (2004). Alanyl-tRNA Synthetase Crystal Structure and Design for Acceptor-Stem Recognition. Molecular Cell, 13, 13. https://doi.org/doi: 10.1016/s1097-2765(04)00126-1.
Marsh, E. K., & May, R. C. (2012). Caenorhabditis elegans, a model organism for investigating immunity. Appl Environ Microbiol, 78(7), 2075-2081. https://doi.org/10.1128/AEM.07486-11
Martha A.Lovato, J. W. C. a. P. S. (2001). Translocation within the acceptor helix of a major tRNA identity determinant. EMBO, 20, 8.
Masaaki Sokabe, T. O., Akiyoshi Nakamura, Keita Tokunaga, Osamu Nureki, Min Yao, and Isao Tanaka. (2009). The structure of alanyl-tRNA synthetase with editing domain. PNAS, 106, 6. https://doi.org/doi 10.1073 pnas.0904645106
Masahiro Naganumaa, S.-i. S., Ryuya Fukunagaa,and Shigeyuki Yokoyamaa. (2009). Unique protein architecture of alanyl-tRNA synthetase for aminoacylation, editing, and dimerization. PNAS, 106, 6. https://doi.org/doi 10.1073pnas.0901572106
Min Guo, Y. E. C., Kirk Beebe, Ryan Shapiro, Xiang-Lei Yang and Paul Schimmel. (2008). The C-Ala Domain Brings Together Editing and Aminoacylation Functions on One tRNA. Science AAAS, 325, 5. https://doi.org/140.115.227.5
Naganuma, M., Sekine, S., Chong, Y. E., Guo, M., Yang, X. L., Gamper, H., Hou, Y. M., Schimmel, P., & Yokoyama, S. (2014). The selective tRNA aminoacylation mechanism based on a single G*U pair. Nature, 510(7506), 507-511. https://doi.org/10.1038/nature13440
Neuenfeldt, A., Lorber, B., Ennifar, E., Gaudry, A., Sauter, C., Sissler, M., & Florentz, C. (2013). Thermodynamic properties distinguish human mitochondrial aspartyl-tRNA synthetase from bacterial homolog with same 3D architecture. Nucleic Acids Res, 41(4), 2698-2708. https://doi.org/10.1093/nar/gks1322
Olsson, C., & Swenson, J. (2019). The role of disaccharides for protein–protein interactions – a SANS study. Molecular Physics, 117(22), 3408-3416. https://doi.org/10.1080/00268976.2019.1640400
Park, S. J., & Schimmel, P. (1988). Evidence for interaction of an aminoacyl transfer RNA synthetase with a region important for the identity of its cognate transfer RNA. Journal of Biological Chemistry, 263(32), 16527-16530. https://doi.org/10.1016/s0021-9258(18)37421-0
Rajendran, V., Kalita, P., Shukla, H., Kumar, A., & Tripathi, T. (2018). Aminoacyl-tRNA synthetases: Structure, function, and drug discovery. Int J Biol Macromol, 111, 400-414. https://doi.org/10.1016/j.ijbiomac.2017.12.157
Sakurai, M., Ohtsuki, T., & Watanabe, K. (2005). Modification at position 9 with 1-methyladenosine is crucial for structure and function of nematode mitochondrial tRNAs lacking the entire T-arm. Nucleic Acids Res, 33(5), 1653-1661. https://doi.org/10.1093/nar/gki309
Sissler, M., Gonzalez-Serrano, L. E., & Westhof, E. (2017). Recent Advances in Mitochondrial Aminoacyl-tRNA Synthetases and Disease. Trends Mol Med, 23(8), 693-708. https://doi.org/10.1016/j.molmed.2017.06.002
Sun, L., Song, Y., Blocquel, D., Yang, X. L., & Schimmel, P. (2016). Two crystal structures reveal design for repurposing the C-Ala domain of human AlaRS. Proc Natl Acad Sci U S A, 113(50), 14300-14305. https://doi.org/10.1073/pnas.1617316113
Wei, N., Zhang, Q., & Yang, X. L. (2019). Neurodegenerative Charcot-Marie-Tooth disease as a case study to decipher novel functions of aminoacyl-tRNA synthetases. J Biol Chem, 294(14), 5321-5339. https://doi.org/10.1074/jbc.REV118.002955
Xu, S., Schaack, S., Seyfert, A., Choi, E., Lynch, M., & Cristescu, M. E. (2012). High mutation rates in the mitochondrial genomes of Daphnia pulex. Mol Biol Evol, 29(2), 763-769. https://doi.org/10.1093/molbev/msr243
Yasukawa, T., & Kang, D. (2018). An overview of mammalian mitochondrial DNA replication mechanisms. J Biochem, 164(3), 183-193. https://doi.org/10.1093/jb/mvy058
Zeng, Q. Y., Peng, G. X., Li, G., Zhou, J. B., Zheng, W. Q., Xue, M. Q., Wang, E. D., & Zhou, X. L. (2019). The G3-U70-independent tRNA recognition by human mitochondrial alanyl-tRNA synthetase. Nucleic Acids Res, 47(6), 3072-3085. https://doi.org/10.1093/nar/gkz078
Zhang, H., Yang, X. L., & Sun, L. (2021). The uniqueness of AlaRS and its human disease connections. RNA Biol, 18(11), 1501-1511. https://doi.org/10.1080/15476286.2020.1861803 |