參考文獻 |
1. Lewis, D.A. and J.A. Lieberman, Catching up on schizophrenia: natural history and neurobiology. Neuron, 2000. 28(2): p. 325-334.
2. Kessler, R.C., et al., Age of onset of mental disorders: a review of recent literature. Current opinion in psychiatry, 2007. 20(4): p. 359.
3. Robinson, N. and S.E. Bergen, Environmental risk factors for schizophrenia and bipolar disorder and their relationship to genetic risk: Current knowledge and future directions. Frontiers in Genetics, 2021. 12: p. 999.
4. Hilker, R., et al., Heritability of schizophrenia and schizophrenia spectrum based on the nationwide Danish twin register. Biological psychiatry, 2018. 83(6): p. 492-498.
5. Van Os, J., G. Kenis, and B.P. Rutten, The environment and schizophrenia. Nature, 2010. 468(7321): p. 203-212.
6. Green, M.F., W.P. Horan, and J. Lee, Social cognition in schizophrenia. Nature Reviews Neuroscience, 2015. 16(10): p. 620-631.
7. Green, M.F., et al., Social disconnection in schizophrenia and the general community. Schizophrenia bulletin, 2018. 44(2): p. 242-249.
8. Corradi-Dell′Acqua, C., et al., What determines social behavior? Investigating the role of emotions, self-centered motives, and social norms. Frontiers in Human Neuroscience, 2016. 10: p. 342.
9. Wang, F., et al., Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science, 2011. 334(6056): p. 693-697.
10. Ferreira-Fernandes, E. and J. Peça, The Neural Circuit Architecture of Social Hierarchy in Rodents and Primates. Frontiers in Cellular Neuroscience, 2022: p. 192.
11. Wang, Y., et al., Accelerated evolution of an Lhx2 enhancer shapes mammalian social hierarchies. Cell research, 2020. 30(5): p. 408-420.
12. Franco, L.O., et al., Social subordination induced by early life adversity rewires inhibitory control of the prefrontal cortex via enhanced Npy1r signaling. Neuropsychopharmacology, 2020. 45(9): p. 1438-1447.
13. Wei, D., V. Talwar, and D. Lin, Neural circuits of social behaviors: innate yet flexible. Neuron, 2021. 109(10): p. 1600-1620.
14. Wesson, D.W., Sniffing behavior communicates social hierarchy. Current Biology, 2013. 23(7): p. 575-580.
15. Grossmann, T., Mapping prefrontal cortex functions in human infancy. Infancy, 2013. 18(3): p. 303-324.
16. Wood, J.N. and J. Grafman, Human prefrontal cortex: processing and representational perspectives. Nature reviews neuroscience, 2003. 4(2): p. 139-147.
17. Bicks, L.K., et al., Prefrontal cortex and social cognition in mouse and man. Frontiers in psychology, 2015. 6: p. 1805.
18. Shepherd, G.M., The microcircuit concept applied to cortical evolution: from three-layer to six-layer cortex. Frontiers in neuroanatomy, 2011. 5: p. 30.
19. Thomson, A.M. and C. Lamy, Functional maps of neocortical local circuitry. Frontiers in neuroscience, 2007: p. 2.
20. Anderson, S.W., et al., Impairment of Social and Moral Behavior Related to Early Damage in Human Prefrontal Cortek, in Social neuroscience. 2013, Psychology Press. p. 29-39.
21. Krienen, F.M., P.-C. Tu, and R.L. Buckner, Clan mentality: evidence that the medial prefrontal cortex responds to close others. Journal of Neuroscience, 2010. 30(41): p. 13906-13915.
22. Lee, E., et al., Enhanced neuronal activity in the medial prefrontal cortex during social approach behavior. Journal of Neuroscience, 2016. 36(26): p. 6926-6936.
23. Xu, S., et al., Neural Circuits for Social Interactions: From Microcircuits to Input-Output Circuits. Frontiers in Neural Circuits, 2021: p. 126.
24. Huang, W.-C., et al., Social behavior is modulated by valence-encoding mPFC-amygdala sub-circuitry. Cell reports, 2020. 32(2): p. 107899.
25. Yizhar, O., et al., Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature, 2011. 477(7363): p. 171-178.
26. Felix-Ortiz, A.C., et al., Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience, 2016. 321: p. 197-209.
27. Straub, R.E., et al., Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet, 2002. 71(2): p. 337-48.
28. Owen, M.J., N.M. Williams, and M.C. O′Donovan, The molecular genetics of schizophrenia: new findings promise new insights. Molecular psychiatry, 2004. 9(1): p. 14-27.
29. Talbot, K., et al., Dysbindin-1 is a synaptic and microtubular protein that binds brain snapin. Human molecular genetics, 2006. 15(20): p. 3041-3054.
30. Talbot, K., et al., Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest, 2004. 113(9): p. 1353-63.
31. Oyama, S., et al., Dysbindin-1, a schizophrenia-related protein, functionally interacts with the DNA-dependent protein kinase complex in an isoform-dependent manner. PLoS One, 2009. 4(1): p. e4199.
32. Talbot, K., et al., Handbook of neurochemistry and molecular neurobiology. 2009.
33. Benson, M.A., et al., Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. Journal of Biological Chemistry, 2001. 276(26): p. 24232-24241.
34. Ito, H., et al., Dysbindin-1, WAVE2 and Abi-1 form a complex that regulates dendritic spine formation. Mol Psychiatry, 2010. 15(10): p. 976-86.
35. H.G., L., Localization of dystrophin to postsynaptic regions of central nervous system cortical neurons Nature 1990.
36. Blake, D.J., et al., Different dystrophin-like complexes are expressed in neurons and glia. The Journal of cell biology, 1999. 147(3): p. 645-658.
37. Ghiani, C., et al., The dysbindin-containing complex (BLOC-1) in brain: developmental regulation, interaction with SNARE proteins and role in neurite outgrowth. Molecular psychiatry, 2010. 15(2): p. 204-215.
38. Harris, J.J., R. Jolivet, and D. Attwell, Synaptic energy use and supply. Neuron, 2012. 75(5): p. 762-777.
39. Suh, B.K., et al., Schizophrenia-associated dysbindin modulates axonal mitochondrial movement in cooperation with p150glued. Molecular brain, 2021. 14(1): p. 1-14.
40. Zhao, J., et al., Dysbindin-1 regulates mitochondrial fission and gamma oscillations. Molecular psychiatry, 2021. 26(9): p. 4633-4651.
41. Huang, C.C., et al., Deletion of Dtnbp1 in mice impairs threat memory consolidation and is associated with enhanced inhibitory drive in the amygdala. Translational psychiatry, 2019. 9(1): p. 1-15.
42. Talbot, K., The sandy (sdy) mouse: a dysbindin-1 mutant relevant to schizophrenia research. 2009. 179: p. 87-94.
43. Hattori, S., et al., Behavioral abnormalities and dopamine reductions in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia. Biochemical and biophysical research communications, 2008. 373(2): p. 298-302.
44. Petit, E.I., et al., Dysregulation of specialized delay/interference-dependent working memory following loss of dysbindin-1A in schizophrenia-related phenotypes. Neuropsychopharmacology, 2017. 42(6): p. 1349-1360.
45. Tang, J., et al., Dysbindin-1 in dorsolateral prefrontal cortex of schizophrenia cases is reduced in an isoform-specific manner unrelated to dysbindin-1 mRNA expression. Hum Mol Genet, 2009. 18(20): p. 3851-63.
46. Takao, K., et al., Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia. Molecular brain, 2008. 1(1): p. 1-12.
47. Chang, E., et al., Single point mutation on the gene encoding dysbindin results in recognition deficits. Genes, Brain and Behavior, 2018. 17(5): p. e12449.
48. Cox, M., et al., Neurobehavioral abnormalities in the dysbindin‐1 mutant, sandy, on a C57BL/6J genetic background. Genes, Brain and Behavior, 2009. 8(4): p. 390-397.
49. Feng, Y.-Q., et al., Dysbindin deficiency in sandy mice causes reduction of snapin and displays behaviors related to schizophrenia. Schizophrenia research, 2008. 106(2-3): p. 218-228.
50. Leggio, G., et al., The epistatic interaction between the dopamine D3 receptor and dysbindin-1 modulates higher-order cognitive functions in mice and humans. Molecular psychiatry, 2021. 26(4): p. 1272-1285.
51. Bhardwaj, S.K., et al., Behavioral characterization of dysbindin-1 deficient sandy mice. Behavioural brain research, 2009. 197(2): p. 435-441.
52. Glen Jr, W.B., et al., Dysbindin‐1 loss compromises NMDAR‐dependent synaptic plasticity and contextual fear conditioning. Hippocampus, 2014. 24(2): p. 204-213.
53. Li, W., et al., Hermansky-Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nature genetics, 2003. 35(1): p. 84-89.
54. Moghaddam, B., Bringing order to the glutamate chaos in schizophrenia. Neuron, 2003. 40(5): p. 881-884.
55. Tang, T.T.-T., et al., Dysbindin regulates hippocampal LTP by controlling NMDA receptor surface expression. Proceedings of the National Academy of Sciences, 2009. 106(50): p. 21395-21400.
56. Karlsgodt, K.H., et al., Reduced dysbindin expression mediates N-methyl-D-aspartate receptor hypofunction and impaired working memory performance. Biological psychiatry, 2011. 69(1): p. 28-34.
57. Papaleo, F., et al., Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Molecular psychiatry, 2012. 17(1): p. 85-98.
58. Zhou, Y., et al., Interactions between the NR2B receptor and CaMKII modulate synaptic plasticity and spatial learning. Journal of Neuroscience, 2007. 27(50): p. 13843-13853.
59. Bayer, K., et al., Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature, 2001. 411(6839): p. 801-805.
60. Tovote, P., J.P. Fadok, and A. Lüthi, Neuronal circuits for fear and anxiety. Nature Reviews Neuroscience, 2015. 16(6): p. 317-331.
61. Plath, N., et al., Arc/Arg3. 1 is essential for the consolidation of synaptic plasticity and memories. Neuron, 2006. 52(3): p. 437-444.
62. Shepherd, J.D. and M.F. Bear, New views of Arc, a master regulator of synaptic plasticity. Nature neuroscience, 2011. 14(3): p. 279-284.
63. Ploski, J.E., et al., The activity-regulated cytoskeletal-associated protein (Arc/Arg3. 1) is required for memory consolidation of pavlovian fear conditioning in the lateral amygdala. Journal of Neuroscience, 2008. 28(47): p. 12383-12395.
64. Bramham, C.R., et al., The immediate early gene arc/arg3. 1: regulation, mechanisms, and function. Journal of Neuroscience, 2008. 28(46): p. 11760-11767.
65. Manago, F., et al., Genetic disruption of Arc/Arg3. 1 in mice causes alterations in dopamine and neurobehavioral phenotypes related to schizophrenia. Cell reports, 2016. 16(8): p. 2116-2128.
66. Yuan, Q., et al., Regulation of brain-derived neurotrophic factor exocytosis and gamma-aminobutyric acidergic interneuron synapse by the schizophrenia susceptibility gene dysbindin-1. Biological psychiatry, 2016. 80(4): p. 312-322.
67. Jia, J.-M., et al., The schizophrenia susceptibility gene dysbindin regulates dendritic spine dynamics. Journal of Neuroscience, 2014. 34(41): p. 13725-13736.
68. Kolluri, N., et al., Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia. American Journal of Psychiatry, 2005. 162(6): p. 1200-1202.
69. Klein, M.O., et al., Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol Neurobiol, 2019. 39(1): p. 31-59.
70. Carlsson, Perspectives on the discovery of central monoaminergic neurotransmission. Annu Rev Neurosci, 1987. 10: p. 19-40.
71. Dal Toso, R., et al., The dopamine D2 receptor: two molecular forms generated by alternative splicing. The EMBO journal, 1989. 8(13): p. 4025-4034.
72. Giros, B., et al., Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature, 1989. 342(6252): p. 923-926.
73. De Mei, C., et al., Getting specialized: presynaptic and postsynaptic dopamine D2 receptors. Current opinion in pharmacology, 2009. 9(1): p. 53-58.
74. Simpson, E.H., C. Kellendonk, and E. Kandel, A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron, 2010. 65(5): p. 585-596.
75. Lesting, J., J. Neddens, and G. Teuchert-Noodt, Ontogeny of the dopamine innervation in the nucleus accumbens of gerbils. Brain research, 2005. 1066(1-2): p. 16-23.
76. Sanford, N. and T.S. Woodward, Functional Delineation of Prefrontal Networks Underlying Working Memory in Schizophrenia: A Cross-data-set Examination. Journal of Cognitive Neuroscience, 2021. 33(9): p. 1880-1908.
77. Meador-Woodruff, J.H., et al., Dopamine receptor transcript expression in striatum and prefrontal and occipital cortex: focal abnormalities in orbitofrontal cortex in schizophrenia. Archives of general psychiatry, 1997. 54(12): p. 1089-1095.
78. Kwak, Y.T., et al., Change of dopamine receptor mRNA expression in lymphocyte of schizophrenic patients. BMC medical genetics, 2001. 2(1): p. 1-9.
79. Albert, K.A., et al., Evidence for decreased DARPP-32 in the prefrontal cortex of patients with schizophrenia. Archives of general psychiatry, 2002. 59(8): p. 705-712.
80. Berridge, M.J., Inositol trisphosphate and calcium signalling mechanisms. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2009. 1793(6): p. 933-940.
81. Berridge, M.J., The inositol trisphosphate/calcium signaling pathway in health and disease. Physiological reviews, 2016. 96(4): p. 1261-1296.
82. O’Brien, W.T., et al., Glycogen synthase kinase-3 is essential for β-arrestin-2 complex formation and lithium-sensitive behaviors in mice. The Journal of clinical investigation, 2011. 121(9).
83. Koros, E. and C. Dorner-Ciossek, The role of glycogen synthase kinase-3beta in schizophrenia. Drug news & perspectives, 2007. 20(7): p. 437-445.
84. Beasley, C., et al., Glycogen synthase kinase-3β immunoreactivity is reduced in the prefrontal cortex in schizophrenia. Neuroscience Letters, 2001. 302(2-3): p. 117-120.
85. Emamian, E.S., et al., Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet, 2004. 36(2): p. 131-7.
86. Weickert, C.S., et al., Human dysbindin (dtnbp1) gene expression innormal brain and in schizophrenic prefrontal cortex and midbrain. Archives of general psychiatry, 2004. 61(6): p. 544-555.
87. Iizuka, Y., et al., Evidence that the BLOC-1 protein dysbindin modulates dopamine D2 receptor internalization and signaling but not D1 internalization. Journal of Neuroscience, 2007. 27(45): p. 12390-12395.
88. Scheggia, D., et al., Variations in Dysbindin-1 are associated with cognitive response to antipsychotic drug treatment. Nat Commun, 2018. 9(1): p. 2265.
89. Scheggia, D., et al., Variations in Dysbindin-1 are associated with cognitive response to antipsychotic drug treatment. Nature communications, 2018. 9(1): p. 1-11.
90. Stahl, S.M., Mechanism of action of brexpiprazole: comparison with aripiprazole. CNS Spectr, 2016. 21(1): p. 1-6.
91. Yoshimi, N., T. Futamura, and K. Hashimoto, Improvement of dizocilpine-induced social recognition deficits in mice by brexpiprazole, a novel serotonin–dopamine activity modulator. European Neuropsychopharmacology, 2015. 25(3): p. 356-364.
92. Bessieres, B., O. Nicole, and B. Bontempi, Assessing recent and remote associative olfactory memory in rats using the social transmission of food preference paradigm. Nature Protocols, 2017. 12(7): p. 1415-1436.
93. Loureiro, M., et al., Social transmission of food safety depends on synaptic plasticity in the prefrontal cortex. Science, 2019. 364(6444): p. 991-995.
94. Vazdarjanova, A., et al., Spatial exploration induces ARC, a plasticity‐related immediate‐early gene, only in calcium/calmodulin‐dependent protein kinase II‐positive principal excitatory and inhibitory neurons of the rat forebrain. Journal of Comparative Neurology, 2006. 498(3): p. 317-329.
95. Harda, Z., et al., Autophosphorylation of αCaMKII affects social interactions in mice. Genes, Brain and Behavior, 2018. 17(5): p. e12457.
96. Williamson, C.M., et al., Social hierarchy position in female mice is associated with plasma corticosterone levels and hypothalamic gene expression. Scientific Reports, 2019. 9(1): p. 1-14.
97. Eisenegger, C., J. Haushofer, and E. Fehr, The role of testosterone in social interaction. Trends in cognitive sciences, 2011. 15(6): p. 263-271.
98. Duque-Wilckens, N. and B.C. Trainor, Behavioral neuroendocrinology of female aggression, in Oxford research encyclopedia of neuroscience. 2017.
99. Wu, M.V., et al., Estrogen masculinizes neural pathways and sex-specific behaviors. Cell, 2009. 139(1): p. 61-72.
100. Mehta, P.H., et al., Hormonal underpinnings of status conflict: Testosterone and cortisol are related to decisions and satisfaction in the hawk-dove game. Hormones and Behavior, 2017. 92: p. 141-154.
101. Creel, S., Social dominance and stress hormones. Trends in ecology & evolution, 2001. 16(9): p. 491-497.
102. Creel, S., Dominance, aggression, and glucocorticoid levels in social carnivores. Journal of Mammalogy, 2005. 86(2): p. 255-264.
103. Florido, A., et al., Sex differences in fear memory consolidation via Tac2 signaling in mice. Nature communications, 2021. 12(1): p. 1-19.
104. Ferretti, V., et al., Oxytocin signaling in the central amygdala modulates emotion discrimination in mice. Current Biology, 2019. 29(12): p. 1938-1953. e6.
105. Guastella, A.J., P.B. Mitchell, and F. Mathews, Oxytocin enhances the encoding of positive social memories in humans. Biological psychiatry, 2008. 64(3): p. 256-258.
106. Skuse, D.H., et al., Common polymorphism in the oxytocin receptor gene (OXTR) is associated with human social recognition skills. Proceedings of the National Academy of Sciences, 2014. 111(5): p. 1987-1992.
107. Pobbe, R.L., et al., Oxytocin receptor knockout mice display deficits in the expression of autism-related behaviors. Hormones and behavior, 2012. 61(3): p. 436-444.
108. Becker, J.B. and E. Chartoff, Sex differences in neural mechanisms mediating reward and addiction. Neuropsychopharmacology, 2019. 44(1): p. 166-183.
109. Zachry, J.E., et al., Sex differences in dopamine release regulation in the striatum. Neuropsychopharmacology, 2021. 46(3): p. 491-499.
110. Williams, O.O., et al., Sex Differences in Dopamine Receptors and Relevance to Neuropsychiatric Disorders. Brain Sciences, 2021. 11(9): p. 1199.
111. Andersen, S.L., et al., Sex differences in dopamine receptor overproduction and elimination. Neuroreport, 1997. 8(6): p. 1495-1497.
112. Hasbi, A., et al., Sex difference in dopamine D1-D2 receptor complex expression and signaling affects depression-and anxiety-like behaviors. Biology of sex differences, 2020. 11(1): p. 1-17.
113. Orendain-Jaime, E.N., J.M. Ortega-Ibarra, and S.J. López-Pérez, Evidence of sexual dimorphism in D1 and D2 dopaminergic receptors expression in frontal cortex and striatum of young rats. Neurochemistry International, 2016. 100: p. 62-66.
114. Weinstein, J.J., et al., Pathway-specific dopamine abnormalities in schizophrenia. Biological psychiatry, 2017. 81(1): p. 31-42.
115. Ripke, S., et al., Biological insights from 108 schizophrenia-associated genetic loci. Nature, 2014. 511(7510): p. 421-+.
116. Huentelman, M.J., et al., Association of SNPs in EGR3 and ARC with schizophrenia supports a biological pathway for schizophrenia risk. PloS one, 2015. 10(10): p. e0135076.
117. Fromer, M., et al., De novo mutations in schizophrenia implicate synaptic networks. Nature, 2014. 506(7487): p. 179-184.
118. Purcell, S.M., et al., A polygenic burden of rare disruptive mutations in schizophrenia. Nature, 2014. 506(7487): p. 185-190.
119. Guillozet-Bongaarts, A., et al., Altered gene expression in the dorsolateral prefrontal cortex of individuals with schizophrenia. Molecular psychiatry, 2014. 19(4): p. 478-485.
120. Ji, Y., et al., Role of dysbindin in dopamine receptor trafficking and cortical GABA function. Proceedings of the National Academy of Sciences, 2009. 106(46): p. 19593-19598.
121. Binjumah, M., J. Ajarem, and M. Ahmad, Effects of the perinatal exposure of Gum Arabic on the development, behavior and biochemical parameters of mice offspring. Saudi Journal of Biological Sciences, 2018. 25(7): p. 1332-1338. |