參考文獻 |
1. Dhanoa, B.S., et al., Update on the Kelch-like (KLHL) gene family. Hum Genomics, 2013. 7: p. 13.
2. Xu, L., et al., BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature, 2003. 425(6955): p. 316-21.
3. Shi, X., et al., Kelch-like proteins: Physiological functions and relationships with diseases. Pharmacol Res, 2019. 148: p. 104404.
4. Gupta, V.A. and A.H. Beggs, Kelch proteins: emerging roles in skeletal muscle development and diseases. Skelet Muscle, 2014. 4: p. 11.
5. Zhang, Y., et al., An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci, 2014. 34(36): p. 11929-47.
6. Chen, Y., et al., Actinfilin, a brain-specific actin-binding protein in postsynaptic density. J Biol Chem, 2002. 277(34): p. 30495-501.
7. Chen, Y. and M. Li, Interactions between CAP70 and actinfilin are important for integrity of actin cytoskeleton structures in neurons. Neuropharmacology, 2005. 49(7): p. 1026-41.
8. Salinas, G.D., et al., Actinfilin is a Cul3 substrate adaptor, linking GluR6 kainate receptor subunits to the ubiquitin-proteasome pathway. J Biol Chem, 2006. 281(52): p. 40164-73.
9. Paciorkowski, A.R., et al., Copy number variants and infantile spasms: evidence for abnormalities in ventral forebrain development and pathways of synaptic function. Eur J Hum Genet, 2011. 19(12): p. 1238-45.
10. De Rubeis, S., et al., Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 2014. 515(7526): p. 209-15.
11. Elserogy, Y., et al., Chromosomal aberrations in children with autism spectrum disorders in Upper Egypt. Anatolian Journal of Psychiatry, 2017: p. 1.
12. Hu, H.T., T.N. Huang, and Y.P. Hsueh, KLHL17/Actinfilin, a brain-specific gene associated with infantile spasms and autism, regulates dendritic spine enlargement. J Biomed Sci, 2020. 27(1): p. 103.
13. Bozzi, Y., S. Casarosa, and M. Caleo, Epilepsy as a neurodevelopmental disorder. Front Psychiatry, 2012. 3: p. 19.
14. Lux, A.L. and J.P. Osborne, A proposal for case definitions and outcome measures in studies of infantile spasms and West syndrome: consensus statement of the West Delphi group. Epilepsia, 2004. 45(11): p. 1416-28.
15. Saemundsen, E., P. Ludvigsson, and V. Rafnsson, Risk of autism spectrum disorders after infantile spasms: a population-based study nested in a cohort with seizures in the first year of life. Epilepsia, 2008. 49(11): p. 1865-70.
16. Gano, D., et al., MRI findings in infants with infantile spasms after neonatal hypoxic-ischemic encephalopathy. Pediatr Neurol, 2013. 49(6): p. 401-5.
17. Paciorkowski, A.R., L.L. Thio, and W.B. Dobyns, Genetic and biologic classification of infantile spasms. Pediatr Neurol, 2011. 45(6): p. 355-67.
18. Preitner, N., et al., APC is an RNA-binding protein, and its interactome provides a link to neural development and microtubule assembly. Cell, 2014. 158(2): p. 368-382.
19. Pirone, A., et al., APC conditional knock-out mouse is a model of infantile spasms with elevated neuronal beta-catenin levels, neonatal spasms, and chronic seizures. Neurobiol Dis, 2017. 98: p. 149-157.
20. Mohn, J.L., et al., Adenomatous polyposis coli protein deletion leads to cognitive and autism-like disabilities. Mol Psychiatry, 2014. 19(10): p. 1133-42.
21. Bahi-Buisson, N., et al., Spectrum of epilepsy in terminal 1p36 deletion syndrome. Epilepsia, 2008. 49(3): p. 509-15.
22. Rosenfeld, J.A., et al., Refinement of causative genes in monosomy 1p36 through clinical and molecular cytogenetic characterization of small interstitial deletions. Am J Med Genet A, 2010. 152A(8): p. 1951-9.
23. Janicot, R., L.R. Shao, and C.E. Stafstrom, Infantile Spasms: An Update on Pre-Clinical Models and EEG Mechanisms. Children (Basel), 2020. 7(1).
24. Zeidan, J., et al., Global prevalence of autism: A systematic review update. Autism Res, 2022. 15(5): p. 778-790.
25. Werling, D.M. and D.H. Geschwind, Sex differences in autism spectrum disorders. Curr Opin Neurol, 2013. 26(2): p. 146-53.
26. Gillberg, C. and E. Fernell, Autism plus versus autism pure. J Autism Dev Disord, 2014. 44(12): p. 3274-6.
27. Barnea-Goraly, N., et al., A preliminary longitudinal volumetric MRI study of amygdala and hippocampal volumes in autism. Prog Neuropsychopharmacol Biol Psychiatry, 2014. 48: p. 124-8.
28. Stoodley, C.J., Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci, 2014. 8: p. 92.
29. Penzes, P., et al., Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci, 2011. 14(3): p. 285-93.
30. Kasai, H., et al., Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci, 2010. 33(3): p. 121-9.
31. Voineagu, I., et al., Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature, 2011. 474(7351): p. 380-4.
32. Stoner, R., et al., Patches of disorganization in the neocortex of children with autism. N Engl J Med, 2014. 370(13): p. 1209-1219.
33. Tick, B., et al., Heritability of autism spectrum disorders: a meta-analysis of twin studies. J Child Psychol Psychiatry, 2016. 57(5): p. 585-95.
34. Gronborg, T.K., D.E. Schendel, and E.T. Parner, Recurrence of autism spectrum disorders in full- and half-siblings and trends over time: a population-based cohort study. JAMA Pediatr, 2013. 167(10): p. 947-53.
35. Sanders, S.J., et al., De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 2012. 485(7397): p. 237-41.
36. Grove, J., et al., Identification of common genetic risk variants for autism spectrum disorder. Nat Genet, 2019. 51(3): p. 431-444.
37. Basilico, B., J. Morandell, and G. Novarino, Molecular mechanisms for targeted ASD treatments. Curr Opin Genet Dev, 2020. 65: p. 126-137.
38. Hotulainen, P. and C.C. Hoogenraad, Actin in dendritic spines: connecting dynamics to function. J Cell Biol, 2010. 189(4): p. 619-29.
39. Okamoto, K., et al., Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci, 2004. 7(10): p. 1104-12.
40. Joensuu, M., V. Lanoue, and P. Hotulainen, Dendritic spine actin cytoskeleton in autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry, 2018. 84(Pt B): p. 362-381.
41. Hlushchenko, I., et al., ASD-Associated De Novo Mutations in Five Actin Regulators Show Both Shared and Distinct Defects in Dendritic Spines and Inhibitory Synapses in Cultured Hippocampal Neurons. Front Cell Neurosci, 2018. 12: p. 217.
42. Weaver, A.M., et al., Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr Biol, 2001. 11(5): p. 370-4.
43. Ohoka, Y. and Y. Takai, Isolation and characterization of cortactin isoforms and a novel cortactin-binding protein, CBP90. Genes Cells, 1998. 3(9): p. 603-12.
44. Chen, Y.K. and Y.P. Hsueh, Cortactin-binding protein 2 modulates the mobility of cortactin and regulates dendritic spine formation and maintenance. J Neurosci, 2012. 32(3): p. 1043-55.
45. Shih, P.Y., et al., CTTNBP2 Controls Synaptic Expression of Zinc-Related Autism-Associated Proteins and Regulates Synapse Formation and Autism-like Behaviors. Cell Rep, 2020. 31(9): p. 107700.
46. Bliss, T.V. and G.L. Collingridge, A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 1993. 361(6407): p. 31-9.
47. Ito, M., The molecular organization of cerebellar long-term depression. Nat Rev Neurosci, 2002. 3(11): p. 896-902.
48. Kelleher, R.J., 3rd, A. Govindarajan, and S. Tonegawa, Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron, 2004. 44(1): p. 59-73.
49. Winden, K.D., D. Ebrahimi-Fakhari, and M. Sahin, Abnormal mTOR Activation in Autism. Annu Rev Neurosci, 2018. 41: p. 1-23.
50. Choi, Y.J., et al., Tuberous sclerosis complex proteins control axon formation. Genes Dev, 2008. 22(18): p. 2485-95.
51. Nie, D., et al., The Stress-Induced Atf3-Gelsolin Cascade Underlies Dendritic Spine Deficits in Neuronal Models of Tuberous Sclerosis Complex. J Neurosci, 2015. 35(30): p. 10762-72.
52. Bateup, H.S., et al., Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron, 2013. 78(3): p. 510-22.
53. McBride, K.L., et al., Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Res, 2010. 3(3): p. 137-41.
54. Hobert, J.A., et al., Biochemical screening and PTEN mutation analysis in individuals with autism spectrum disorders and macrocephaly. Eur J Hum Genet, 2014. 22(2): p. 273-6.
55. Song, M.S., L. Salmena, and P.P. Pandolfi, The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol, 2012. 13(5): p. 283-96.
56. Frazier, T.W., et al., Molecular and phenotypic abnormalities in individuals with germline heterozygous PTEN mutations and autism. Mol Psychiatry, 2015. 20(9): p. 1132-8.
57. Amiri, A., et al., Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci, 2012. 32(17): p. 5880-90.
58. Getz, S.A., et al., Rapamycin prevents, but does not reverse, aberrant migration in Pten knockout neurons. Neurobiol Dis, 2016. 93: p. 12-20.
59. Ebstein, F., et al., Neurodevelopmental Disorders (NDD) Caused by Genomic Alterations of the Ubiquitin-Proteasome System (UPS): the Possible Contribution of Immune Dysregulation to Disease Pathogenesis. Front Mol Neurosci, 2021. 14: p. 733012.
60. Hanus, C. and E.M. Schuman, Proteostasis in complex dendrites. Nat Rev Neurosci, 2013. 14(9): p. 638-48.
61. Louros, S.R. and E.K. Osterweil, Perturbed proteostasis in autism spectrum disorders. J Neurochem, 2016. 139(6): p. 1081-1092.
62. Moncla, A., et al., Angelman syndrome resulting from UBE3A mutations in 14 patients from eight families: clinical manifestations and genetic counselling. J Med Genet, 1999. 36(7): p. 554-60.
63. Thomas, J.A., et al., Genetic and clinical characterization of patients with an interstitial duplication 15q11-q13, emphasizing behavioral phenotype and response to treatment. Am J Med Genet A, 2003. 119A(2): p. 111-20.
64. Dindot, S.V., et al., The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet, 2008. 17(1): p. 111-8.
65. Yashiro, K., et al., Ube3a is required for experience-dependent maturation of the neocortex. Nat Neurosci, 2009. 12(6): p. 777-83.
66. Olabarria, M., et al., Dysfunction of the ubiquitin ligase E3A Ube3A/E6-AP contributes to synaptic pathology in Alzheimer′s disease. Commun Biol, 2019. 2: p. 111.
67. O′Roak, B.J., et al., Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 2012. 485(7397): p. 246-50.
68. Pintard, L., A. Willems, and M. Peter, Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J, 2004. 23(8): p. 1681-7.
69. Amar, M., et al., Autism-linked Cullin3 germline haploinsufficiency impacts cytoskeletal dynamics and cortical neurogenesis through RhoA signaling. Mol Psychiatry, 2021. 26(7): p. 3586-3613.
70. Rapanelli, M., et al., Behavioral, circuitry, and molecular aberrations by region-specific deficiency of the high-risk autism gene Cul3. Mol Psychiatry, 2021. 26(5): p. 1491-1504.
71. Chen, Y., et al., Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol Cell, 2009. 35(6): p. 841-55.
72. Tashiro, A., A. Minden, and R. Yuste, Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb Cortex, 2000. 10(10): p. 927-38.
73. Brand, C.S., et al., RhoA regulates Drp1 mediated mitochondrial fission through ROCK to protect cardiomyocytes. Cell Signal, 2018. 50: p. 48-57.
74. Oliferenko, S., et al., Analysis of CD44-containing lipid rafts: Recruitment of annexin II and stabilization by the actin cytoskeleton. J Cell Biol, 1999. 146(4): p. 843-54.
75. Waisman, D.M., Annexin II tetramer: structure and function. Mol Cell Biochem, 1995. 149-150: p. 301-22.
76. Yamada, A., et al., Involvement of the annexin II-S100A10 complex in the formation of E-cadherin-based adherens junctions in Madin-Darby canine kidney cells. J Biol Chem, 2005. 280(7): p. 6016-27.
77. Hayashi, A., et al., Localization of annexin II in the paranodal regions and Schmidt-Lanterman incisures in the peripheral nervous system. Glia, 2007. 55(10): p. 1044-52.
78. Kozlova, I., et al., Cell Adhesion Molecules and Protein Synthesis Regulation in Neurons. Front Mol Neurosci, 2020. 13: p. 592126.
79. Shapiro, L., J. Love, and D.R. Colman, Adhesion molecules in the nervous system: structural insights into function and diversity. Annu Rev Neurosci, 2007. 30: p. 451-74.
80. Deller, T., et al., Synaptopodin-deficient mice lack a spine apparatus and show deficits in synaptic plasticity. Proc Natl Acad Sci U S A, 2003. 100(18): p. 10494-9.
81. JEROME ENGEL, J., < Mesial temporal lobe epilepsy: what have we learned.pdf>. PROGRESS IN CLINICAL NEUROSCIENCE, 2001.
82. Berkovic, S.F., et al., Hippocampal sclerosis in temporal lobe epilepsy demonstrated by magnetic resonance imaging. Ann Neurol, 1991. 29(2): p. 175-82.
83. Sutula, T., et al., Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol, 1989. 26(3): p. 321-30.
84. Falcon-Moya, R., T.S. Sihra, and A. Rodriguez-Moreno, Kainate Receptors: Role in Epilepsy. Front Mol Neurosci, 2018. 11: p. 217.
85. Telfeian, A.E., et al., Overexpression of GluR6 in rat hippocampus produces seizures and spontaneous nonsynaptic bursting in vitro. Neurobiol Dis, 2000. 7(4): p. 362-74.
86. Hung, Y.F. and Y.P. Hsueh, TLR7 and IL-6 differentially regulate the effects of rotarod exercise on the transcriptomic profile and neurogenesis to influence anxiety and memory. iScience, 2021. 24(4): p. 102384.
87. Djakovic, S.N., et al., Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J Biol Chem, 2009. 284(39): p. 26655-65.
88. Bell, M., et al., Dendritic spine geometry and spine apparatus organization govern the spatiotemporal dynamics of calcium. J Gen Physiol, 2019. 151(8): p. 1017-1034.
89. Hering, H. and M. Sheng, Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci, 2001. 2(12): p. 880-8.
90. Terasaki, M., et al., Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs. Cell, 2013. 154(2): p. 285-96.
91. Jedlicka, P. and T. Deller, Understanding the role of synaptopodin and the spine apparatus in Hebbian synaptic plasticity - New perspectives and the need for computational modeling. Neurobiol Learn Mem, 2017. 138: p. 21-30.
92. Konietzny, A., et al., Myosin V regulates synaptopodin clustering and localization in the dendrites of hippocampal neurons. J Cell Sci, 2019. 132(16).
93. Fanselow, M.S. and H.W. Dong, Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 2010. 65(1): p. 7-19.
94. Danjo, T., T. Toyoizumi, and S. Fujisawa, Spatial representations of self and other in the hippocampus. Science, 2018. 359(6372): p. 213-218.
95. Cinalli, D.A., Jr., et al., Object Recognition Memory: Distinct Yet Complementary Roles of the Mouse CA1 and Perirhinal Cortex. Front Mol Neurosci, 2020. 13: p. 527543.
96. Chai, A.P., et al., A Temporal Activity of CA1 Neurons Underlying Short-Term Memory for Social Recognition Altered in PTEN Mouse Models of Autism Spectrum Disorder. Front Cell Neurosci, 2021. 15: p. 699315.
97. Balasco, L., G. Provenzano, and Y. Bozzi, Sensory Abnormalities in Autism Spectrum Disorders: A Focus on the Tactile Domain, From Genetic Mouse Models to the Clinic. Front Psychiatry, 2019. 10: p. 1016.
98. Orefice, L.L., et al., Targeting Peripheral Somatosensory Neurons to Improve Tactile-Related Phenotypes in ASD Models. Cell, 2019. 178(4): p. 867-886 e24.
99. Perucca, P., P. Camfield, and C. Camfield, Does gender influence susceptibility and consequences of acquired epilepsies? Neurobiol Dis, 2014. 72 Pt B: p. 125-30.
100. Gu, Q. and R.L. Moss, Novel mechanism for non-genomic action of 17 beta-oestradiol on kainate-induced currents in isolated rat CA1 hippocampal neurones. J Physiol, 1998. 506 ( Pt 3): p. 745-54.
101. Lippman-Bell, J.J., et al., Altered hippocampal dendritic spine maturation after hypoxia-induced seizures in neonatal rats. Mol Cell Neurosci, 2021. 113: p. 103629.
102. Semple, B.D., et al., Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol, 2013. 106-107: p. 1-16.
103. Vaiserman, A.M., Epigenetic programming by early-life stress: Evidence from human populations. Dev Dyn, 2015. 244(3): p. 254-65.
104. Sandi, C. and J. Haller, Stress and the social brain: behavioural effects and neurobiological mechanisms. Nat Rev Neurosci, 2015. 16(5): p. 290-304.
105. Nishi, M., Effects of Early-Life Stress on the Brain and Behaviors: Implications of Early Maternal Separation in Rodents. Int J Mol Sci, 2020. 21(19).
106. Bondar, N.P., A.A. Lepeshko, and V.V. Reshetnikov, Effects of Early-Life Stress on Social and Anxiety-Like Behaviors in Adult Mice: Sex-Specific Effects. Behav Neurol, 2018. 2018: p. 1538931.
107. Clipperton-Allen, A.E., et al., Environmental Enrichment Rescues Social Behavioral Deficits and Synaptic Abnormalities in Pten Haploinsufficient Mice. Genes (Basel), 2021. 12(9).
108. Burrows, E.L., et al., Environmental enrichment modulates affiliative and aggressive social behaviour in the neuroligin-3 R451C mouse model of autism spectrum disorder. Pharmacol Biochem Behav, 2020. 195: p. 172955.
109. Queen, N.J., et al., Environmental enrichment improves metabolic and behavioral health in the BTBR mouse model of autism. Psychoneuroendocrinology, 2020. 111: p. 104476.
110. Rojas-Charry, L., et al., Abnormalities of synaptic mitochondria in autism spectrum disorder and related neurodevelopmental disorders. J Mol Med (Berl), 2021. 99(2): p. 161-178.
111. Galvez-Contreras, A.Y., et al., Role of Oligodendrocytes and Myelin in the Pathophysiology of Autism Spectrum Disorder. Brain Sci, 2020. 10(12).
112. de Curtis, M., R. Garbelli, and L. Uva, A hypothesis for the role of axon demyelination in seizure generation. Epilepsia, 2021. 62(3): p. 583-595.
113. Rajani, R.M., et al., Characterisation of early ultrastructural changes in the cerebral white matter of CADASIL small vessel disease using high-pressure freezing/freeze-substitution. Neuropathol Appl Neurobiol, 2021. 47(5): p. 694-704.
114. Seong, E., L. Yuan, and J. Arikkath, Cadherins and catenins in dendrite and synapse morphogenesis. Cell Adh Migr, 2015. 9(3): p. 202-13. |