參考文獻 |
肆、 參考文獻
Agarwal, P.K., et al., Role of DREB transcription factors in abiotiCand biotiCstress tolerance in plants. Plant Cell Rep, 2006. 25(12): p. 1263-74.
Almadanim, M.C., et al., The rice cold-responsive calcium-dependent protein kinase OsCPK17 is regulated by alternative splicing and post-translational modifications. Biochim Biophys Acta Mol Cell Res, 2018. 1865(2): p. 231-246.
Black, D.L., Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem, 2003. 72: p. 291-336.
Calixto, C.P.G., et al., Rapid and DynamiCAlternative Splicing Impacts the Arabidopsis Cold Response Transcriptome. Plant Cell, 2018. 30(7): p. 1424-1444.
Chinnusamy, V., J.K. Zhu, and R. Sunkar, Gene regulation during cold stress acclimation in plants. Methods Mol Biol, 2010. 639: p. 39-55.
Dong, C., et al., Alternative Splicing Plays a Critical Role in Maintaining Mineral Nutrient Homeostasis in Rice(Oryza sativa). Plant Cell, 2018. 30(10): p. 2267-2285.
Fairman-Williams, M.E., U.P. Guenther, and E. Jankowsky, SF1 and SF2 helicases: family matters. Curr Opin Struct Biol, 2010. 20(3): p. 313-24.
Fang, Y., S. Hearn, and D.L. Spector, Tissue-specifiCexpression and dynamiCorganization of SR splicing factors in Arabidopsis. Mol Biol Cell, 2004. 15(6): p. 2664-73.
Fernandez-Jimenez, N. and M. Pradillo, The role of the nuclear envelope in the regulation of chromatin dynamics during cell division. J Exp Bot, 2020. 71(17): p. 5148-5159.
Filichkin, S.A., et al., Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res, 2010. 20(1): p. 45-58.
Fukagawa, N.K. and L.H. Ziska, Rice: Importance for Global Nutrition. J Nutr Sci Vitaminol(Tokyo), 2019. 65(Supplement): p. S2-S3.
Godoy, F., et al., AbiotiCStress in Crop Species: Improving Tolerance by Applying Plant Metabolites. Plants(Basel), 2021. 10(2).
Guan, Q., et al., A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell, 2013. 25(1): p. 342-56.
Ito, Y., et al., Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgeniCrice. Plant Cell Physiol, 2006. 47(1): p. 141-53.
Jarmoskaite, I. and R. Russell, DEAD-box proteins as RNA helicases and chaperones. Wiley Interdiscip Rev RNA, 2011. 2(1): p. 135-52.
Korner, C., Plant adaptation to cold climates. F1000Res, 2016. 5.
Li, J., et al., Chilling tolerance in rice: Past and present. J Plant Physiol, 2022. 268: p. 153576.
Liang, W.W. and S.C. Cheng, A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence. Genes Dev, 2015. 29(1): p. 81-93.
Linder, P. and E. Jankowsky, From unwinding to clamping the DEAD box RNA helicase family. Nat Rev Mol Cell Biol, 2011. 12(8): p. 505-16.
Liu, Y., et al., Cold acclimation by the CBF-COR pathway in a changing climate: Lessons from Arabidopsis thaliana. Plant Cell Rep, 2019. 38(5): p. 511-519.
Liu, Y., D. Tabata, and R. Imai, A Cold-Inducible DEAD-Box RNA Helicase from Arabidopsis thaliana Regulates Plant Growth and Development under Low Temperature. PLoS One, 2016. 11(4): p. e0154040.
Loden, M. and B. van Steensel, Whole-genome views of chromatin structure. Chromosome Res, 2005. 13(3): p. 289-98.
Lu, C.A., et al., DEAD-Box RNA Helicase 42 Plays a Critical Role in Pre-mRNA Splicing under Cold Stress. Plant Physiol, 2020. 182(1): p. 255-271.
Mortimer, S.A., M.A. Kidwell, and J.A. Doudna, Insights into RNA structure and function from genome-wide studies. Nat Rev Genet, 2014. 15(7): p. 469-79.
Nilsen, T.W. and B.R. Graveley, Expansion of the eukaryotiCproteome by alternative splicing. Nature, 2010. 463(7280): p. 457-63.
Owthtrim, G.W., RNA helicases: diverse roles in prokaryotiCresponse to abiotiCstress. RNA Biol, 2013. 10(1): p. 96-110.
Perriman, R., et al., ATP requirement for Prp5p function is determined by Cus2p and the structure of U2 small nuclear RNA. ProCNatl Acad Sci U S A, 2003. 100(24): p. 13857-62.
Quina, A.S., M. Buschbeck, and L. Di Croce, Chromatin structure and epigenetics. Biochem Pharmacol, 2006. 72(11): p. 1563-9.
Reddy, A.S. and G. Shad Ali, Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses. Wiley Interdiscip Rev RNA, 2011. 2(6): p. 875-89.
Rocak, S. and P. Linder, DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol, 2004. 5(3): p. 232-41.
Rose, A., S. Patel, and I. Meier, The plant nuclear envelope. Planta, 2004. 218(3): p. 327-36.
Tuteja, N., A.A. Vashisht, and R. Tuteja, Translation initiation factor 4A: a prototype member of dead-box protein family. Physiol Mol Biol Plants, 2008. 14(1-2): p. 101-7.
Wahl, M.C., C.L. Will, and R. Luhrmann, The spliceosome: design principles of a dynamiCRNP machine. Cell, 2009. 136(4): p. 701-18.
Waqas, M.A., et al., Potential Mechanisms of AbiotiCStress Tolerance in Crop Plants Induced by Thiourea. Front Plant Sci, 2019. 10: p. 1336.
Will, C.L. and R. Luhrmann, Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol, 2001. 13(3): p. 290-301.
Yuan, Q., et al., Rice bioinformatics. analysis of rice sequence data and leveraging the data to other plant species. Plant Physiol, 2001. 125(3): p. 1166-74.
Zhang, H., et al., AbiotiCstress responses in plants. Nat Rev Genet, 2022. 23(2): p. 104-119.
Zhang, Q., et al., Rice and cold stress: methods for its evaluation and su mMary of cold tolerance-related quantitative trait loci. Rice(N Y), 2014. 7(1): p. 24.
Zhang, Q., et al., Coordinated Dynamics of RNA Splicing Speckles in the Nucleus. J Cell Physiol, 2016. 231(6): p. 1269-75.
Liu, H., et al., CRISPR-P 2.0: An Improved CRISPR-Cas9 Tool for Genome Editing in Plants. Mol Plant, 2017. 10(3): p. 530-532.
Hahn, F. and V. Nekrasov, CRISPR/Cas precision: do we need to worry about off-targeting in plants? Plant Cell Rep, 2019. 38(4): p. 437-441.
Okuzaki, A., et al., Estrogen-inducible GFP expression patterns in rice(Oryza sativa L.). Plant Cell Rep, 2011. 30(4): p. 529-38.
Tang, Q., et al., SF3B1/Hsh155 HEAT motif mutations affect interaction with the spliceosomal ATPase Prp5, resulting in altered branch site selectivity in pre-mRNA splicing. Genes Dev, 2016. 30(24): p. 2710-2723. |