參考文獻 |
1. Wang, W., et al., Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 2018. 557(7703): p. 43-49.
2. Okawa, S., A. Makino, and T. Mae, Effect of irradiance on the partitioning of assimilated carbon during the early phase of grain filling in rice. Annals of Botany, 2003. 92(3): p. 357-364.
3. Smirnoff, N., Plant stress physiology. eLS, 2014.
4. Wang, W., et al. Biotechnology of plant osmotic stress tolerance physiological and molecular considerations. in IV International Symposium on In Vitro Culture and Horticultural Breeding 560. 2000.
5. Kotak, S., et al., Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 2007. 10(3): p. 310-316.
6. Wang, W., et al., Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 2004. 9(5): p. 244-252.
7. Rhee, J.-S., et al., Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicus to environmental toxicants. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2009. 149(1): p. 104-112.
8. Mogk, A. and B. Bukau, Role of sHsps in organizing cytosolic protein aggregation and disaggregation. Cell Stress and Chaperones, 2017. 22(4): p. 493-502.
9. Carver, J.A., et al., Proteostasis and the regulation of intra-and extracellular protein aggregation by ATP-independent molecular chaperones: lens α-crystallins and milk caseins. Accounts of Chemical Research, 2018. 51(3): p. 745-752.
10. De Jong, W.W., J.A. Leunissen, and C. Voorter, Evolution of the alpha-crystallin/small heat-shock protein family. Molecular biology and evolution, 1993. 10(1): p. 103-126.
11. de Jong, W.W., G.-J. Caspers, and J.A. Leunissen, Genealogy of the α-crystallin—small heat-shock protein superfamily. International journal of biological macromolecules, 1998. 22(3-4): p. 151-162.
12. Al-Whaibi, M.H., Plant heat-shock proteins: A mini review. Journal of King Saud University - Science, 2011. 23(2): p. 139-150.
13. Kaiser, W.M. and J.A. Bassham, Light-Dark Regulation of Starch Metabolism in Chloroplasts: I. Levels of Metabolites in Chloroplasts and Medium during Light-Dark Transition 1. Plant Physiology, 1979. 63(1): p. 105-108.
14. Whatley, F.R., K. Tagawa, and I. Arnon Daniel, SEPARATION OF THE LIGHT AND DARK REACTIONS IN ELECTRON TRANSFER DURING PHOTOSYNTHESIS. Proceedings of the National Academy of Sciences, 1963. 49(2): p. 266-270.
15. Schirmer, M., et al., Physicochemical and morphological characterization of different starches with variable amylose/amylopectin ratio. Food Hydrocolloids, 2013. 32(1): p. 52-63.
16. Xie, F., et al., Rheological properties of starches with different amylose/amylopectin ratios. Journal of Cereal Science, 2009. 49(3): p. 371-377.
17. Tetlow, I.J., Starch biosynthesis in developing seeds. Seed Science Research, 2011. 21(1): p. 5-32.
18. Martin, C. and A.M. Smith, Starch biosynthesis. Plant Cell, 1995. 7(7): p. 971-85.
19. Hannah, L.C. and M. James, The complexities of starch biosynthesis in cereal endosperms. Current Opinion in Biotechnology, 2008. 19(2): p. 160-165.
20. Hwang, S.K., et al., Mechanism Underlying Heat Stability of the Rice Endosperm Cytosolic ADP-Glucose Pyrophosphorylase. Front Plant Sci, 2019. 10: p. 70.
21. Linebarger, C.R.L., et al., Heat Stability of Maize Endosperm ADP-Glucose Pyrophosphorylase Is Enhanced by Insertion of a Cysteine in the N Terminus of the Small Subunit. Plant Physiology, 2005. 139(4): p. 1625-1634.
22. Christensen, J.H., et al., Regional climate projections. Chapter 11. 2007.
23. El-Kereamy, A., et al., The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PloS one, 2012. 7(12): p. e52030.
24. Beckles, D.M. and M. Thitisaksakul, How environmental stress affects starch composition and functionality in cereal endosperm. Starch‐Stärke, 2014. 66(1-2): p. 58-71.
25. Lanning, S.B., et al., Extreme nighttime air temperatures in 2010 impact rice chalkiness and milling quality. Field Crops Research, 2011. 124(1): p. 132-136.
26. Siebenmorgen, T.J., B.C. Grigg, and S.B. Lanning, Impacts of Preharvest Factors During Kernel Development on Rice Quality and Functionality. Annual Review of Food Science and Technology, 2013. 4(1): p. 101-115.
27. Godfray, H.C.J., et al., Food Security: The Challenge of Feeding 9 Billion People. Science, 2010. 327(5967): p. 812-818.
28. Sweeney, M. and S. McCouch, The complex history of the domestication of rice. Ann Bot, 2007. 100(5): p. 951-7.
29. Linares Olga, F., African rice (Oryza glaberrima): History and future potential. Proceedings of the National Academy of Sciences, 2002. 99(25): p. 16360-16365.
30. Khush, G.S., Origin, dispersal, cultivation and variation of rice. Plant molecular biology, 1997. 35(1): p. 25-34.
31. Oka, H.-I., Origin of cultivated rice. 2012: Elsevier.
32. Vinocur, B. and A. Altman, Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 2005. 16(2): p. 123-132.
33. Pressman, E., M.M. Peet, and D.M. Pharr, The Effect of Heat Stress on Tomato Pollen Characteristics is Associated with Changes in Carbohydrate Concentration in the Developing Anthers. Annals of Botany, 2002. 90(5): p. 631-636.
34. Cândido, J.d.S., et al., Poly (acrylamide-co-acrylate)/rice husk ash hydrogel composites. II. Temperature effect on rice husk ash obtention. Composites Part B: Engineering, 2013. 51: p. 246-253.
35. Peng, S., et al., Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences, 2004. 101(27): p. 9971-9975.
36. Alcázar, R., et al., Involvement of polyamines in plant response to abiotic stress. Biotechnology letters, 2006. 28(23): p. 1867-1876.
37. Flowers, T. and A. Yeo, Breeding for salinity resistance in crop plants: where next? Functional Plant Biology, 1995. 22(6): p. 875-884.
38. Guan, J.-C., et al., Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant molecular biology, 2004. 56(5): p. 795-809.
39. Wehmeyer, N. and E. Vierling, The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant physiology, 2000. 122(4): p. 1099-1108.
40. Cheng, J.-Y., 水稻小分子量熱休克蛋白質-OsHSP16. 9A 在水稻種子耐熱性之功能分析. 2016, National Central University.
41. Ballicora, M.A., A.A. Iglesias, and J. Preiss, ADP-glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis. Photosynthesis research, 2004. 79(1): p. 1-24.
42. Stark, D.M., et al., Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science, 1992. 258(5080): p. 287-292.
43. Grefen, C. and M.R. Blatt, A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC). Biotechniques, 2012. 53(5): p. 311-314.
44. Wehmeyer, N., et al., Synthesis of Small Heat-Shock Proteins Is Part of the Developmental Program of Late Seed Maturation. Plant Physiology, 1996. 112(2): p. 747-757.
45. DeRocher, A.E. and E. Vierling, Developmental control of small heat shock protein expression during pea seed maturation. The Plant Journal, 1994. 5(1): p. 93-102.
46. Chandusingh, P., et al., Molecular mapping of quantitative trait loci for grain chalkiness in rice (Oryza sativa L.). Indian Journal of Genetics and Plant Breeding, 2013. 73(3): p. 244-251.
47. Juliano, B.O., A.A. Antonio, and B.V. Esmama, Effects of protein content on the distribution and properties of rice protein. Journal of the Science of Food and Agriculture, 1973. 24(3): p. 295-306.
48. Bao, J., Rice starch, in Rice. 2019, Elsevier. p. 55-108.
49. Shen, Y.-D., et al., Design and synthesis of immunoconjugates and development of an indirect ELISA for rapid detection of 3, 5-dinitrosalicyclic acid hydrazide. Molecules, 2008. 13(9): p. 2238-2248.
50. Williams, V.R., et al., Rice starch, varietal differences in amylose content of rice starch. Journal of Agricultural and Food Chemistry, 1958. 6(1): p. 47-48.
51. Sato, Y. and S. Yokoya, Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17. 7. Plant cell reports, 2008. 27(2): p. 329-334.
52. Lee, B.-H., et al., Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene, 2000. 245(2): p. 283-290.
53. Chen, X., et al., Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2014. 1844(4): p. 818-828.
54. Huang, X.-J., 水稻熱休克蛋白質 OsHSP16. 9A 與 OsHSP101 之交互作用分析. 2020, National Central University.
55. Sun, W., M. Van Montagu, and N. Verbruggen, Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 2002. 1577(1): p. 1-9.
56. de Jong, W.W., J.A. Leunissen, and C.E. Voorter, Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol, 1993. 10(1): p. 103-26.
57. de Jong, W.W., G.J. Caspers, and J.A. Leunissen, Genealogy of the alpha-crystallin--small heat-shock protein superfamily. Int J Biol Macromol, 1998. 22(3-4): p. 151-62.
58. Al-Whaibi, M.H., Plant heat-shock proteins: a mini review. Journal of King Saud University-Science, 2011. 23(2): p. 139-150.
59. Banerjee, A. and A. Roychoudhury, Small heat shock proteins: structural assembly and functional responses against heat stress in plants, in Plant metabolites and regulation under environmental stress. 2018, Elsevier. p. 367-376.
60. Zhou, W., et al., Overexpression of the 16-kDa α-amylase/trypsin inhibitor RAG2 improves grain yield and quality of rice. Plant Biotechnol J, 2017. 15(5): p. 568-580.
61. Liu, Z., Z. Wang, and J. Zhu, Observational studies on amyloplasts with single-starch granule in rice endosperm. Brazilian Journal of Botany, 2016. 39(3): p. 821-832.
62. Zuo, J. and J. Li, Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet, 2014. 48(1): p. 99-118.
63. Jones, D., et al., An analysis of seed development in Pisum sativum L. IX. Genetic analysis of lipid content. Plant breeding, 1990. 104(2): p. 144-151.
64. Oiestad, A., J. Martin, and M. Giroux, Yield increases resulting from AGPase overexpression in rice are reliant on plant nutritional status. Plant Growth Regulation, 2019. 89(2): p. 179-190.
65. Kang, G., et al., Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene. Plant Physiology and Biochemistry, 2013. 73: p. 93-98.
66. Li, N., et al., Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta, 2011. 233(2): p. 241-250.
67. Ahmed, N., et al., Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice. Journal of the Science of Food and Agriculture, 2015. 95(11): p. 2237-2243.
68. Lin, S.K., et al., Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. |