參考文獻 |
1. Kwasnieski, J.C., T.L. Orr-Weaver, and D.P. Bartel, Early genome activation in Drosophila is extensive with an initial tendency for aborted transcripts and retained introns. Genome Res, 2019. 29(7): p. 1188-1197.
2. Tadros, W. and H.D. Lipshitz, The maternal-to-zygotic transition: a play in two acts. Development, 2009. 136(18): p. 3033-42.
3. Hamm, D.C. and M.M. Harrison, Regulatory principles governing the maternal-to-zygotic transition: insights from Drosophila melanogaster. Open Biol, 2018. 8(12): p. 180183.
4. Cline, T.W. and B.J. Meyer, Vive la difference: males vs females in flies vs worms. Annu Rev Genet, 1996. 30: p. 637-702.
5. ten Bosch, J.R., J.A. Benavides, and T.W. Cline, The TAGteam DNA motif controls the timing of Drosophila pre-blastoderm transcription. Development, 2006. 133(10): p. 1967-77.
6. Liang, H.L., et al., The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature, 2008. 456(7220): p. 400-3.
7. Hamm, D.C., et al., A conserved maternal-specific repressive domain in Zelda revealed by Cas9-mediated mutagenesis in Drosophila melanogaster. PLoS Genet, 2017. 13(12): p. e1007120.
8. Nien, C.Y., et al., Temporal coordination of gene networks by Zelda in the early Drosophila embryo. PLoS Genet, 2011. 7(10): p. e1002339.
9. Harrison, M.M., et al., Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition. PLoS Genet, 2011. 7(10): p. e1002266.
10. Kvon, E.Z., et al., HOT regions function as patterned developmental enhancers and have a distinct cis-regulatory signature. Genes Dev, 2012. 26(9): p. 908-13.
11. Sun, Y., et al., Zelda overcomes the high intrinsic nucleosome barrier at enhancers during Drosophila zygotic genome activation. Genome Res, 2015. 25(11): p. 1703-14.
12. Kanodia, J.S., et al., Pattern formation by graded and uniform signals in the early Drosophila embryo. Biophys J, 2012. 102(3): p. 427-33.
13. Hamm, D.C., E.R. Bondra, and M.M. Harrison, Transcriptional activation is a conserved feature of the early embryonic factor Zelda that requires a cluster of four zinc fingers for DNA binding and a low-complexity activation domain. J Biol Chem, 2015. 290(6): p. 3508-18.
14. Struffi, P., et al., Combinatorial activation and concentration-dependent repression of the Drosophila even skipped stripe 3+7 enhancer. Development, 2011. 138(19): p. 4291-9.
15. Lee, M.T., et al., Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature, 2013. 503(7476): p. 360-4.
16. Jumper, J., et al., Highly accurate protein structure prediction with AlphaFold. Nature, 2021. 596(7873): p. 583-589.
17. Earl, L.A., et al., Cryo-EM: beyond the microscope. Curr Opin Struct Biol, 2017. 46: p. 71-78.
18. Varadi, M., et al., AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res, 2022. 50(D1): p. D439-D444.
19. Jumper, J., et al., Highly accurate protein structure prediction with AlphaFold. Nature, 2021. 596(7873): p. 583-589.
20. Schulz, K.N., et al., Zelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo. Genome Res, 2015. 25(11): p. 1715-26.
21. Soruco, M.M., et al., The CLAMP protein links the MSL complex to the X chromosome during Drosophila dosage compensation. Genes Dev, 2013. 27(14): p. 1551-6.
22. Larschan, E., et al., Identification of chromatin-associated regulators of MSL complex targeting in Drosophila dosage compensation. PLoS Genet, 2012. 8(7): p. e1002830.
23. Gramates, L.S., et al., FlyBase: a guided tour of highlighted features. Genetics, 2022. 220(4).
24. Reichardt, I., et al., The tumor suppressor Brat controls neuronal stem cell lineages by inhibiting Deadpan and Zelda. EMBO Rep, 2018. 19(1): p. 102-117.
25. Laver, J.D., et al., Genome-wide analysis of Staufen-associated mRNAs identifies secondary structures that confer target specificity. Nucleic Acids Res, 2013. 41(20): p. 9438-60.
26. Shokri, L., et al., A Comprehensive Drosophila melanogaster Transcription Factor Interactome. Cell Rep, 2019. 27(3): p. 955-970 e7.
27. Carnesecchi, J., et al., Multi-level and lineage-specific interactomes of the Hox transcription factor Ubx contribute to its functional specificity. Nat Commun, 2020. 11(1): p. 1388.
28. David, J.R., et al., Evolution of assortative mating following selective introgression of pigmentation genes between two Drosophila species. Ecol Evol, 2022. 12(4): p. e8821.
29. Ni, J.Q., et al., Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster. Nat Methods, 2008. 5(1): p. 49-51.
30. Kanca, O., et al., An expanded toolkit for Drosophila gene tagging using synthesized homology donor constructs for CRISPR-mediated homologous recombination. Elife, 2022. 11.
31. Comeron, J.M., R. Ratnappan, and S. Bailin, The many landscapes of recombination in Drosophila melanogaster. PLoS Genet, 2012. 8(10): p. e1002905.
32. Ando, T., et al., Nanopore Formation in the Cuticle of an Insect Olfactory Sensillum. Curr Biol, 2019. 29(9): p. 1512-1520 e6.
33. Schafer, M., et al., Expression of a gene duplication encoding conserved sperm tail proteins is translationally regulated in Drosophila melanogaster. Mol Cell Biol, 1993. 13(3): p. 1708-18.
34. Emelyanov, A.V., et al., Drosophila TAP/p32 is a core histone chaperone that cooperates with NAP-1, NLP, and nucleophosmin in sperm chromatin remodeling during fertilization. Genes Dev, 2014. 28(18): p. 2027-40.
35. Morikawa, R.K., et al., Different levels of the Tripartite motif protein, Anomalies in sensory axon patterning (Asap), regulate distinct axonal projections of Drosophila sensory neurons. Proc Natl Acad Sci U S A, 2011. 108(48): p. 19389-94.
36. Herniou, E.A., et al., The genome sequence and evolution of baculoviruses. Annu Rev Entomol, 2003. 48: p. 211-34.
37. Bonning, B.C. and B.D. Hammock, Development and potential of genetically engineered viral insecticides. Biotechnol Genet Eng Rev, 1992. 10: p. 455-89.
38. Geisler, C. and D. Jarvis, Insect Cell Glycosylation Patterns in the Context of Biopharmaceuticals, in Post‐translational Modification of Protein Biopharmaceuticals. 2009. p. 165-191.
39. Felberbaum, R.S., The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol J, 2015. 10(5): p. 702-14.
40. Funk, C.J., S.C. Braunagel, and G.F. Rohrmann, Baculovirus Structure, in The Baculoviruses, L.K. Miller, Editor. 1997, Springer US: Boston, MA. p. 7-32.
41. Ayres, M.D., et al., The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology, 1994. 202(2): p. 586-605.
42. Rohrmann, G.F., Baculovirus Molecular Biology, 4th edition, in Baculovirus Molecular Biology, rd, Editor. 2013: Bethesda (MD).
43. Hitchman, R.B., et al., Genetic modification of a baculovirus vector for increased expression in insect cells. Cell Biol Toxicol, 2010. 26(1): p. 57-68.
44. Chambers, A.C., et al., Overview of the Baculovirus Expression System. Curr Protoc Protein Sci, 2018. 91: p. 5 4 1-5 4 6.
45. Volkman, L.E., M.D. Summers, and C.H. Hsieh, Occluded and nonoccluded nuclear polyhedrosis virus grown in Trichoplusia ni: comparative neutralization comparative infectivity, and in vitro growth studies. J Virol, 1976. 19(3): p. 820-32.
46. Ikeda, M., R. Hamajima, and M. Kobayashi, Baculoviruses: diversity, evolution and manipulation of insects. Entomological Science, 2015. 18(1): p. 1-20.
47. Slack, J. and B.M. Arif, The baculoviruses occlusion-derived virus: virion structure and function. Adv Virus Res, 2007. 69: p. 99-165.
48. Rohrmann, G.F., et al., N-Terminal polyhedrin sequences and occluded Baculovirus evolution. J Mol Evol, 1981. 17(6): p. 329-33.
49. Evans, S.O., et al., Comparison of three oral selenium compounds in cancer patients: Evaluation of differential pharmacodynamic effects in normal and malignant cells. J Trace Elem Med Biol, 2020. 58: p. 126446.
50. Taugerbeck, R., [Suction--training for teamwork. II]. Quintessenz J, 1973. 3(9): p. 27-32.
51. Brown, W.F., Variance Estimation in the Reed-Muench Fifty Per Cent End-Point Determination. Am J Hyg, 1964. 79: p. 37-46.
52. Lee, D.F., et al., A baculovirus superinfection system: efficient vehicle for gene transfer into Drosophila S2 cells. J Virol, 2000. 74(24): p. 11873-80.
53. Smith, G.E., M.D. Summers, and M.J. Fraser, Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol, 1983. 3(12): p. 2156-65.
54. 康致甄 and 粘仲毅, 以桿狀病毒載體系統 建構與異源表達果蠅Zelda基因及其功能分析, in Construction and ectopic expression of Drosophila Zelda using baculovirus system for functional analysis. 2022, 撰者: 桃園市中壢區. |