博碩士論文 109827008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:89 、訪客IP:3.17.110.119
姓名 羅文晟(Wen-Cherng Luo)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 使用深度學習模型自動分割黑血磁共振腦血管管壁
(Automatic Vessel Lumen and Vessel Wall Segmentation for Black-Blood MRI using Deep Learning Model)
相關論文
★ 使用滾球篩選睡眠紡錘波檢測★ 利用深度學習產生去骨電腦斷層掃描血管造影改進椎動脈分割
★ 評估深度卷積神經網路用於檢測和分割Chest X-ray圖像中的鎖骨骨折★ 自然語言處理於病例情感分析分類器及句子相似度計算
★ 以圓柱採樣訓練深度神經網絡改進頭頸部電腦斷層掃描的骨骼偵測和分割★ 利用自然語言處理在胸腔X-Ray的自由文本病歷報告中標記識別心臟肥大的檔案和句子
★ 肺炎診斷導向之深度學習電腦斷層掃瞄影像分割★ AIoT邊緣運算即時領餐人流計數系統
★ 基於角色情感互動與主動式照護的生成式AI模型能力研究★ 使用SpaCy NER標記胸部放射檢查報告:與 CheXpert Labeler 的比較
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 顱內動脈粥樣硬化是一種動脈慢性退化的病理過程,在疾病早期可以看到血管壁增厚,最後血管狹窄可能會造成腦中風和腦缺血等疾病。如果能夠以黑血磁共振影像及早的辨識顱內動脈粥樣硬化病人中血管變化,對病程發展和治療都有非常重要的影響。因為腦血管管壁較身體其他地方的血管薄,較難被偵測到。所以在本文中,我們提出了一個新的線性模型自動計算出血管壁。在本研究中數據集使用了28個病患資料,每人有1組155個切片(厚度1 mm,畫素0.22到0.5 mm)的黑血磁共振影像。影像預處理先以人工標記基底動脈血管中心點產生中軸線模型,接著在每0.5 mm距離產生1446張(平均每人51.6+/-19.09 張,計算後填入)在基底動脈的二維連續與中軸線垂直的橫向切片,重新採樣為畫素0.1 mm。這些橫向切片數據再由人工手動標記外壁,最後以電腦程式的線性模型自動標記內壁。然後全部1446張的圖像分成1073 (80%)張用於訓練Detectron2和SE-ResNeXt50模型和373 (20%)張用於測試。兩個模型的平均IOU分別是0.75 +/- 0.096和0.73 +/- 0.091。最後測試的結果發現Detectron2沒標到血管壁2張(0.5%, 2/373) SE-ResNeXt50模型沒標到血管壁0張(0%, 0/373)。Detectron2對血管壁的偵測正確率略高於SE-ResNeXt50模型。
摘要(英) Intracranial atherosclerosis is a progressive pathological process in which thickening of the blood vessel wall can be seen in the early stages of the disease, and the luminal narrowing may lead to diseases such as stroke and cerebral ischemia. Early identification of vascular changes is very important in monitoring treatment effectiveness. By using Black Blood MRI to detect subtle changes as early as possible can potentially improve treatment outcome significantly. Because the walls of blood vessels in the brain are thinner than those in other parts of the body, they are more difficult to detect. In this paper, we propose a new linear model to automatically calculate the vessel inner wall automatically to ease the arterial wall labeling. In this study, 28 patients had black blood MRI performed with 155 slices at scanning thickness of 1 mm and planar pixel of 0.22 or 0.5 mm. The MRI images were preprocessed by manual annotation of the centerline of basilar artery (BA) and were resampled with 0.1 mm resolution at the planes perpendicular to the centerline at every 0.5 mm distance along a smoothened centerline. In total, 1446 (51.6 +/-19.09, std, per MRI dataset) 2D serial slices of the BA were generated. These resampled 2D images were labeled manually to define the outer wall of the BA. The inner walls of all images were automatically identified by using the linear model proposed in this study. Then all 1446 images were divided into 1073 (80 %) images for training Detectron2 and SE-ResNeXt50 models and 373 (20 %) images were reserved for test. The average IOU scores for the two models are 0.752 (+/- 0.096, std) and 0.733 (+/- 0.091, std) respectively. The results of the final test found that Detectron2 missed 2 out of 373 test images (0.5 %) and SE-ResNeXt50 missed 0 out of 373 test images (0 %). Detectron2 had a slightly higher accuracy rate in detecting BA walls.
關鍵字(中) ★ 磁共振血管造影術
★ 黑血
★ 血管分割
★ 動脈粥樣硬化
關鍵字(英) ★ MRA
★ Black Blood
★ U-Net
★ Mask RCNN
★ Vessel Segmentation
★ Atherosclerosis
論文目次 中文摘要 i
Abstract ii
Table of contents v
List of tables vi
List of figures vii
Chapter Ⅰ Introduction 1
Chapter Ⅱ Related Work 3
2.1 Intracranial atherosclerotic disease 3
2.2 Vessel wall segmentation 3
2.3 Black blood MRI 4
Chapter Ⅲ Method 6
3.1 Dataset 6
3.2 Image preprocessing 6
3.3 Vessel wall labeling 10
3.4 Linear-linear model 12
3.5. Implementation of deep learning 14
3.5.1 SE-ResNeXt50_32x4d 15
3.5.2 Detectron2 15
3.6 Performance metrics 16
3.7 Visualizing the arterial wall thickness 17
Chapter Ⅳ Experimental Design 18
Chapter Ⅴ Results and Discussion 19
Chapter Ⅵ Conclusion 26
References 27
參考文獻 [1] Lusis, A. Atherosclerosis. Nature 407, 233–241 (2000)
[2] Upputuri PK, Sivasubramanian K, Mark CS, Pramanik M. Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine. Biomed Res Int. 2015;2015:783983. doi: 10.1155/2015/783983. Epub 2015 Mar 2. PMID: 25821821; PMCID: PMC4363824.
[3] Hansen KL, Carlsen JF. New Trends in Vascular Imaging. Diagnostics (Basel). 2021 Jan 12;11(1):112. doi: 10.3390/diagnostics11010112. PMID: 33445602; PMCID: PMC7827585.
[4] H. Zhou, J. Xiao, D. Li, Z. Fan and D. Ruan, "Intracranial Vessel Wall Segmentation with Deep Learning Using a Novel Tiered Loss Function to Incorporate Class Inclusion," 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022, pp. 1-4, doi: 10.1109/ISBI52829.2022.9761428.
[5] van ′t Klooster, R., de Koning, P.J., Dehnavi, R.A., Tamsma, J.T., de Roos, A., Reiber, J.H. and van der Geest, R.J. (2012), Automatic lumen and outer wall segmentation of the carotid artery using deformable three-dimensional models in MR angiography and vessel wall images. J. Magn. Reson. Imaging, 35: 156-165. https://doi.org/10.1002/jmri.22809
[6] Dieuwertje Alblas, Christoph Brune, Jelmer M. Wolterink, "Deep-learning-based carotid artery vessel wall segmentation in black-blood MRI using anatomical priors," Proc. SPIE 12032, Medical Imaging 2022: Image Processing, 120320Y (4 April 2022); https://doi.org/10.1117/12.2611112
[7] F. Shi et al., "Intracranial Vessel Wall Segmentation Using Convolutional Neural Networks," in IEEE Transactions on Biomedical Engineering, vol. 66, no. 10, pp. 2840-2847, Oct. 2019, doi: 10.1109/TBME.2019.2896972.
[8] H. Zhou, J. Xiao, Z. Fan and D. Ruan, "Intracranial Vessel Wall Segmentation For Atherosclerotic Plaque Quantification," 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021, pp. 1416-1419, doi: 10.1109/ISBI48211.2021.9434018.
[9] Leng X, Hurford R, Feng X, Chan KL, Wolters FJ, Li L, Soo YO, Wong KSL, Mok VC, Leung TW, Rothwell PM. Intracranial arterial stenosis in Caucasian versus Chinese patients with TIA and minor stroke: two contemporaneous cohorts and a systematic review. J Neurol Neurosurg Psychiatry. 2021 Mar 30;92(6):590–7. doi: 10.1136/jnnp-2020-325630. Epub ahead of print. PMID: 33785575; PMCID: PMC8142447.
[10] Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med. 2014 Aug;5(8):927-46. PMID: 25489440; PMCID: PMC4258672.
[11] Kim JS, Kang DW, Kwon SU. Intracranial atherosclerosis: incidence, diagnosis and treatment. J Clin Neurol. 2005 Apr;1(1):1-7. doi: 10.3988/jcn.2005.1.1.1. Epub 2005 Apr 30. PMID: 20396467; PMCID: PMC2854925.
[12] Uehara, T., Tabuchi, M. and Mori, E. (2005), Risk factors for occlusive lesions of intracranial arteries in stroke-free Japanese. European Journal of Neurology, 12: 218-222. https://doi.org/10.1111/j.1468-1331.2004.00959.x
[13] Zhu XJ, Wang W, Liu ZJ. High-resolution Magnetic Resonance Vessel Wall Imaging for Intracranial Arterial Stenosis. Chin Med J (Engl). 2016 Jun 5;129(11):1363-70. doi: 10.4103/0366-6999.182826. PMID: 27231176; PMCID: PMC4894049.
[14] Bash S, Villablanca JP, Jahan R, Duckwiler G, Tillis M, Kidwell C, Saver J, Sayre J. Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am J Neuroradiol. 2005 May;26(5):1012-21. PMID: 15891154; PMCID: PMC8158600.
[15] Bodle JD, Feldmann E, Swartz RH, Rumboldt Z, Brown T, Turan TN. High-resolution magnetic resonance imaging: an emerging tool for evaluating intracranial arterial disease. Stroke. 2013 Jan;44(1):287-92. doi: 10.1161/STROKEAHA.112.664680. Epub 2012 Nov 29. PMID: 23204050; PMCID: PMC3556720.
[16] Mossa-Basha M, Alexander M, Gaddikeri S, Yuan C, Gandhi D. Vessel wall imaging for intracranial vascular disease evaluation. J Neurointerv Surg. 2016 Nov;8(11):1154-1159. doi: 10.1136/neurintsurg-2015-012127. Epub 2016 Jan 14. PMID: 26769729; PMCID: PMC5484417.
[17] Qiao, Y., Steinman, D.A., Qin, Q., Etesami, M., Schär, M., Astor, B.C. and Wasserman, B.A. (2011), Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J. Magn. Reson. Imaging, 34: 22-30. https://doi.org/10.1002/jmri.22592
[18] Huang, A., Lee, CW. & Liu, HM. Time to peak and full width at half maximum in MR perfusion: valuable indicators for monitoring moyamoya patients after revascularization. Sci Rep 11, 479 (2021). https://doi.org/10.1038/s41598-020-80036-3
[19] S. Xie, R. Girshick, P. Dollár, Z. Tu and K. He, "Aggregated Residual Transformations for Deep Neural Networks," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5987-5995, doi: 10.1109/CVPR.2017.634.
[20] J. Hu, L. Shen and G. Sun, "Squeeze-and-Excitation Networks," 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141, doi: 10.1109/CVPR.2018.00745.
[21] Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st Conference on Neural Information Processing Systems. Long Beach, CA, pp. 6000–6010 (2017)
[22] K. He, G. Gkioxari, P. Dollár and R. Girshick, "Mask R-CNN," 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2980-2988, doi: 10.1109/ICCV.2017.322.
[23] Lin, TY. et al. (2014). Microsoft COCO: Common Objects in Context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8693. Springer, Cham. https://doi.org/10.1007/978-3-319-10602-1_48
[24] Detectron2’s documentation, https://detectron2.readthedocs.io/en/latest/
[25] Skeletonize, https://scikit-image.org/docs/stable/auto_examples/edges/plot_skeleton.html
指導教授 黃輝揚(Hui-Yang Huang) 審核日期 2022-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明