參考文獻 |
[1] Lusis, A. Atherosclerosis. Nature 407, 233–241 (2000)
[2] Upputuri PK, Sivasubramanian K, Mark CS, Pramanik M. Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine. Biomed Res Int. 2015;2015:783983. doi: 10.1155/2015/783983. Epub 2015 Mar 2. PMID: 25821821; PMCID: PMC4363824.
[3] Hansen KL, Carlsen JF. New Trends in Vascular Imaging. Diagnostics (Basel). 2021 Jan 12;11(1):112. doi: 10.3390/diagnostics11010112. PMID: 33445602; PMCID: PMC7827585.
[4] H. Zhou, J. Xiao, D. Li, Z. Fan and D. Ruan, "Intracranial Vessel Wall Segmentation with Deep Learning Using a Novel Tiered Loss Function to Incorporate Class Inclusion," 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022, pp. 1-4, doi: 10.1109/ISBI52829.2022.9761428.
[5] van ′t Klooster, R., de Koning, P.J., Dehnavi, R.A., Tamsma, J.T., de Roos, A., Reiber, J.H. and van der Geest, R.J. (2012), Automatic lumen and outer wall segmentation of the carotid artery using deformable three-dimensional models in MR angiography and vessel wall images. J. Magn. Reson. Imaging, 35: 156-165. https://doi.org/10.1002/jmri.22809
[6] Dieuwertje Alblas, Christoph Brune, Jelmer M. Wolterink, "Deep-learning-based carotid artery vessel wall segmentation in black-blood MRI using anatomical priors," Proc. SPIE 12032, Medical Imaging 2022: Image Processing, 120320Y (4 April 2022); https://doi.org/10.1117/12.2611112
[7] F. Shi et al., "Intracranial Vessel Wall Segmentation Using Convolutional Neural Networks," in IEEE Transactions on Biomedical Engineering, vol. 66, no. 10, pp. 2840-2847, Oct. 2019, doi: 10.1109/TBME.2019.2896972.
[8] H. Zhou, J. Xiao, Z. Fan and D. Ruan, "Intracranial Vessel Wall Segmentation For Atherosclerotic Plaque Quantification," 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021, pp. 1416-1419, doi: 10.1109/ISBI48211.2021.9434018.
[9] Leng X, Hurford R, Feng X, Chan KL, Wolters FJ, Li L, Soo YO, Wong KSL, Mok VC, Leung TW, Rothwell PM. Intracranial arterial stenosis in Caucasian versus Chinese patients with TIA and minor stroke: two contemporaneous cohorts and a systematic review. J Neurol Neurosurg Psychiatry. 2021 Mar 30;92(6):590–7. doi: 10.1136/jnnp-2020-325630. Epub ahead of print. PMID: 33785575; PMCID: PMC8142447.
[10] Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med. 2014 Aug;5(8):927-46. PMID: 25489440; PMCID: PMC4258672.
[11] Kim JS, Kang DW, Kwon SU. Intracranial atherosclerosis: incidence, diagnosis and treatment. J Clin Neurol. 2005 Apr;1(1):1-7. doi: 10.3988/jcn.2005.1.1.1. Epub 2005 Apr 30. PMID: 20396467; PMCID: PMC2854925.
[12] Uehara, T., Tabuchi, M. and Mori, E. (2005), Risk factors for occlusive lesions of intracranial arteries in stroke-free Japanese. European Journal of Neurology, 12: 218-222. https://doi.org/10.1111/j.1468-1331.2004.00959.x
[13] Zhu XJ, Wang W, Liu ZJ. High-resolution Magnetic Resonance Vessel Wall Imaging for Intracranial Arterial Stenosis. Chin Med J (Engl). 2016 Jun 5;129(11):1363-70. doi: 10.4103/0366-6999.182826. PMID: 27231176; PMCID: PMC4894049.
[14] Bash S, Villablanca JP, Jahan R, Duckwiler G, Tillis M, Kidwell C, Saver J, Sayre J. Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am J Neuroradiol. 2005 May;26(5):1012-21. PMID: 15891154; PMCID: PMC8158600.
[15] Bodle JD, Feldmann E, Swartz RH, Rumboldt Z, Brown T, Turan TN. High-resolution magnetic resonance imaging: an emerging tool for evaluating intracranial arterial disease. Stroke. 2013 Jan;44(1):287-92. doi: 10.1161/STROKEAHA.112.664680. Epub 2012 Nov 29. PMID: 23204050; PMCID: PMC3556720.
[16] Mossa-Basha M, Alexander M, Gaddikeri S, Yuan C, Gandhi D. Vessel wall imaging for intracranial vascular disease evaluation. J Neurointerv Surg. 2016 Nov;8(11):1154-1159. doi: 10.1136/neurintsurg-2015-012127. Epub 2016 Jan 14. PMID: 26769729; PMCID: PMC5484417.
[17] Qiao, Y., Steinman, D.A., Qin, Q., Etesami, M., Schär, M., Astor, B.C. and Wasserman, B.A. (2011), Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J. Magn. Reson. Imaging, 34: 22-30. https://doi.org/10.1002/jmri.22592
[18] Huang, A., Lee, CW. & Liu, HM. Time to peak and full width at half maximum in MR perfusion: valuable indicators for monitoring moyamoya patients after revascularization. Sci Rep 11, 479 (2021). https://doi.org/10.1038/s41598-020-80036-3
[19] S. Xie, R. Girshick, P. Dollár, Z. Tu and K. He, "Aggregated Residual Transformations for Deep Neural Networks," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5987-5995, doi: 10.1109/CVPR.2017.634.
[20] J. Hu, L. Shen and G. Sun, "Squeeze-and-Excitation Networks," 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141, doi: 10.1109/CVPR.2018.00745.
[21] Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st Conference on Neural Information Processing Systems. Long Beach, CA, pp. 6000–6010 (2017)
[22] K. He, G. Gkioxari, P. Dollár and R. Girshick, "Mask R-CNN," 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2980-2988, doi: 10.1109/ICCV.2017.322.
[23] Lin, TY. et al. (2014). Microsoft COCO: Common Objects in Context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8693. Springer, Cham. https://doi.org/10.1007/978-3-319-10602-1_48
[24] Detectron2’s documentation, https://detectron2.readthedocs.io/en/latest/
[25] Skeletonize, https://scikit-image.org/docs/stable/auto_examples/edges/plot_skeleton.html |