博碩士論文 109827020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:181 、訪客IP:18.118.20.77
姓名 林楷崴(Kai-Wei Lin)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 利用體外循環培養系統模擬腦源性神經分泌促使 硬骨類組織成熟化
(To Establish In-vitro Circulating System Mimicking Brain-Derived Neurosecretion for Accelerating Bone-like Tissue Maturation)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著高齡社會來臨,年長者因鈣質流失、骨質疏鬆等問題加劇,骨損傷復原的速度明顯較一般人慢且不佳。傳統上的骨移植治療方式大多是自體、異體骨移植,或是骨粉等生物性材料,但卻存在免疫排斥或骨材料硬度篩選的問題,而現行的細胞療法多採用單細胞(single cell)的方式來治療患者,不但價格昂貴且效果受限,因此想藉由細胞治療以及組織工程的方式來加速傷者骨修復速度。根據衛福部公告,細胞治療已經在多家醫院實行,藉由選取特定細胞加以培養再植入患部,能夠達成減少手術次數、降低感染風險等優勢。臨床醫學案例統計上,發現因車禍意外造成腦損傷患者,其骨頭修復速度較一般患者快速,這與腦神經分泌物突破血腦屏障(blood-brain barrier, BBB)有密切關聯,因此我們使用人類腦神經幹細胞株(human neural progenitor cells/ReNcell™ CX cell line)與初代人類骨髓間質幹細胞(primary human mesenchymal stem cell, hMSCs)在生物反應器中來模擬上述環境,除了添加骨分化試劑外,利用培養神經幹細胞時所分泌出之生長因子,透過系統洄流滋養人類骨髓間質幹細胞,以刺激成骨生長速度加速硬骨類組織成熟化。為了維持神經細胞的生長,本次實驗使用了明膠(gelatin)及人類腦血管內皮細胞株 (human brain endothelial capillary cells, hCMEC/D3 cell line)來做為神經細胞的生物支架,配合海藻膠(alginate)生物支架來促進人類骨髓間質幹細胞形成類硬骨團塊(bone-like tissues)。透過實驗室自組裝的生物反應器,藉由生物反應器的回流裝置輸送生長因子與滋養物質,能夠更貼近真實的人類體循環,最後達到類硬骨團塊成熟化(maturation)之目的。希望透過建立此系統,來突破目前骨科細胞治療市場的困境,造福更多的患者。
摘要(英) With the growing share of aging population, the elderly has crucial problems such as calcium loss and osteoporosis. Thereupon, these aggravated problems lead to bone reconstruction more slowly than the average person. The traditional treatments of bone defects are mostly autologous/allogeneic bone transplantation, but there are problems of immune rejection. Or the clinical doctor would like to use biomaterial substitution, however, how to choose the appropriate material source is very confusing. Moreover, the current cell therapy is expensive and mostly restricted to single cells. According to the announcement of the Ministry of Health and Welfare in Taiwan, the cell therapy has been implemented in many hospitals. The statistics of clinical medical cases showed, it is found that the speed of bone repair in patients with traumatic brain injury (TBI) caused by car accidents is faster than that of ordinary patients. From previous reference we found that is closely related to the breakthrough of blood-brain barrier (BBB) by brain-derived neural secretions. In this study, human neural progenitor cell line (ReNcell™ CX) and primary human mesenchymal stem cells (hMSCs) were applied in the designed bioreactor system to biomimic the micro-environment. The neural-related growth factors secreted by ReNcell™ CX cell line and stimulated hMSCs toward osteogenesis and accelerated bone-like tissue maturation during the dynamic cultivation. In order to maintain the growth of ReNcell™ CX cells, gelatin scaffolds were used as biological scaffolds and human brain endothelial capillary cells (hCMEC/D3) were co-cultured with ReNcell™ CX cells in bioreactor system. At the same time, alginate scaffolds were applied hMSCs to form bone-like tissues. Through the self-designed bioreactor system, growth factors and nourishing substances are delivered through the refluxing device. It is closer to the real human physiological circulation, and finally achieve the purpose of in-vitro bone-like tissue maturation. We sincerely hope the strategy can break through the current predicament of the orthopedic cell therapy market and benefit more patients.
關鍵字(中) ★ 生物反應器
★ 硬骨
★ 成熟化
★ 神經幹細胞
★ 間質幹細胞
★ 神經分泌物
關鍵字(英) ★ Bioreactor
★ hard bone
★ maturation
★ neural stem cell
★ mesenchymal stem cell
★ neurosecretion
論文目次 摘 要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 x
表目錄 xii
符號縮寫說明 xiii
第一章 緒論 1
1-1骨骼 2
1-1-1硬骨的功能 2
1-1-2硬骨的組成 2
1-1-3人類骨髓間質幹細胞 4
1-1-3 破骨細胞 5
1-1-4人類骨髓間質幹細胞之分化 6
1-2骨損傷 8
1-2-1硬骨修復機制 8
1-2-2現行硬骨移植方式 9
1-2-3 骨損傷之統計及其相關市場 10
1-3腦損傷 11
1-3-1腦部微結構 11
1-3-2血腦障壁 11
1-4 腦損傷與硬骨關係 13
1-4-1腦損傷的影響對硬骨的影響 13
1-4-2異位骨化相關機制 13
1-4-3 腦創傷動物模型對骨修復影響 14
第二章 研究動機與實驗目的 16
2-1細胞治療 16
2-1-1細胞治療原理 16
2-1-2現行細胞治療法規 18
2-1-3 臨床的細胞治療 19
2-2細胞培養 20
2-2-1二維細胞培養 20
2-2-2三維細胞培養 20
2-3海藻膠支架 21
2-3-1海藻酸鹽 21
2-3-2 海藻酸鹽之交聯與細胞培養 22
2-4明膠支架 23
2-4-1 明膠 23
2-4-2明膠支架交聯 24
2-4-3谷氨醯胺轉氨酶 25
2-5生物反應器 26
2-5-1組織工程 26
2-5-2傳統生物反應器 27
2-5-3自製生物反應器 28
2-6 串聯系統之生物反應器 29
2-7 實驗設計與架構 30
第三章 材料和方法 32
3-1 細胞培養 32
3-1-1人類骨髓間質幹細胞 32
3-1-2人類腦神經幹細胞 33
3-1-3人類腦血管內皮細胞 34
3-2二維共培養測試 35
3-2-1培養液比例測試 35
3-3骨分化 35
3-3-1骨分化試劑添加 35
3-4 海藻膠支架 36
3-4-1海藻酸支架製備 36
3-4-2海藻酸支架細植入率 37
3-4-3海藻酸支架細胞存活率 37
3-5明膠支架 38
3-5-1谷氨醯胺轉氨酶製備 38
3-5-2明膠支架製備 38
3-6生物反應器 40
3-6-1生物反應器管線配置 40
3-6-2細胞支架載入反應器 40
3-7 支架內細胞分析 40
3-7-1 支架內細胞死活染色 40
3-7-2 酒精固定 41
3-7-3超臨界二氧化碳乾燥 41
3-7-4離子鍍層濺射 42
3-7-5掃描式電子顯微鏡 42
3-8 骨礦化之鑑定 42
3-8-1礦化物結晶分析 42
3-8-2成分分析 42
3-9 硬骨相關基因表達 43
第四章 結果與討論 45
4-1培養液比例測試 45
4-2細胞支架製備 46
4-2-1海藻酸支架 46
4-2-2明膠支架 46
4-3細胞支架植入率 47
4-4細胞支架結構 48
4-5細胞於反應器培養一周後型態觀察 49
4-6 支架內細胞死活染色 50
4-7細胞礦化物分析 52
4-8沉澱物分析 53
4-8-1 X光繞射儀分析 53
4-8-2 傅立葉轉換紅外光譜分析 54
4-9 即時聚合酶連鎖反應 55
4-10 培養液檢測 58
第五章 結論 60
第六章 參考文獻 61
參考文獻 [1] T.D. White, P.A. Folkens, The human bone manual, Elsevier2005.
[2] J.A. Buckwalter, R.R. Cooper, Bone structure and function, Instr Course Lect 36 (1987) 27-48.
[3] N.H. Hart, S. Nimphius, T. Rantalainen, A. Ireland, A. Siafarikas, R.U. Newton, Mechanical basis of bone strength: influence of bone material, bone structure and muscle action, J Musculoskelet Neuronal Interact 17(3) (2017) 114-139.
[4] C. Rey, C. Combes, C. Drouet, M.J. Glimcher, Bone mineral: update on chemical composition and structure, Osteoporosis International 20(6) (2009) 1013-1021.
[5] A. Augello, C. De Bari, The regulation of differentiation in mesenchymal stem cells, Human gene therapy 21(10) (2010) 1226-1238.
[6] L. Song, N.E. Webb, Y. Song, R.S. Tuan, Identification and functional analysis of candidate genes regulating mesenchymal stem cell self-renewal and multipotency, Stem Cells 24(7) (2006) 1707-18.
[7] M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, E. Horwitz, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy 8(4) (2006).
[8] S.L. Teitelbaum, Osteoclasts: What Do They Do and How Do They Do It?, The American Journal of Pathology 170(2) (2007) 427-435.
[9] S.L. Teitelbaum, Bone Resorption by Osteoclasts, Science 289(5484) (2000) 1504-1508.
[10] M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, E. Horwitz, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy 8(4) (2006) 315-7.
[11] J.C. Gerlach, C. Johnen, C. Ottomann, K. Bräutigam, J. Plettig, C. Belfekroun, S. Münch, B. Hartmann, Method for autologous single skin cell isolation for regenerative cell spray transplantation with non-cultured cells, Int J Artif Organs 34(3) (2011) 271-9.
[12] J. He, Y. Liu, T. Zhu, J. Zhu, F. Dimeco, A.L. Vescovi, J.A. Heth, K.M. Muraszko, X. Fan, D.M. Lubman, CD90 is identified as a candidate marker for cancer stem cells in primary high-grade gliomas using tissue microarrays, Mol Cell Proteomics 11(6) (2012) M111.010744.
[13] C.M. Kolf, E. Cho, R.S. Tuan, Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation, Arthritis Res Ther 9(1) (2007) 204.
[14] Z. Tang, X. Li, Y. Tan, H. Fan, X. Zhang, The material and biological characteristics of osteoinductive calcium phosphate ceramics, Regenerative Biomaterials 5 (2017).
[15] H.C. Tenenbaum, K. Palangio, Phosphoethanolamine- and fructose 1,6-diphosphate-induced calcium uptake in bone formed in vitro, Bone Miner 2(3) (1987) 201-10.
[16] A.L. Boskey, T.M. Wright, R.D. Blank, Collagen and Bone Strength, Journal of Bone and Mineral Research 14(3) (1999) 330-335.
[17] S. Pregizer, S.K. Baniwal, X. Yan, Z. Borok, B. Frenkel, Progressive recruitment of Runx2 to genomic targets despite decreasing expression during osteoblast differentiation, J Cell Biochem 105(4) (2008) 965-70.
[18] K. Nakashima, X. Zhou, G. Kunkel, Z. Zhang, J.M. Deng, R.R. Behringer, B. de Crombrugghe, The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation, Cell 108(1) (2002) 17-29.
[19] H.S. Shapiro, J. Chen, J.L. Wrana, Q. Zhang, M. Blum, J. Sodek, Characterization of Porcine Bone Sialoprotein: Primary Structure and Cellular Expression, Matrix 13(6) (1993) 431-440.
[20] J. Wei, G. Karsenty, An overview of the metabolic functions of osteocalcin, Current osteoporosis reports 13(3) (2015) 180-185.
[21] J. Sodek, B. Ganss, M. McKee, Osteopontin, Critical Reviews in Oral Biology & Medicine 11(3) (2000) 279-303.
[22] B. Ganss, R.H. Kim, J. Sodek, Bone sialoprotein, Critical Reviews in Oral Biology & Medicine 10(1) (1999) 79-98.
[23] E.H. Burger, J. Klein-Nulend, Responses of Bone Cells to Biomechanical Forces in Vitro, Advances in Dental Research 13(1) (1999) 93-98.
[24] M. Pfeiffenberger, A. Damerau, A. Lang, F. Buttgereit, P. Hoff, T. Gaber, Fracture Healing Research-Shift towards In Vitro Modeling?, Biomedicines 9(7) (2021).
[25] P. Baldwin, D.J. Li, D.A. Auston, H.S. Mir, R.S. Yoon, K.J. Koval, Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery, J Orthop Trauma 33(4) (2019) 203-213.
[26] C. Myeroff, M. Archdeacon, Autogenous bone graft: donor sites and techniques, J Bone Joint Surg Am 93(23) (2011) 2227-36.
[27] T. Boyce, J. Edwards, N. Scarborough, ALLOGRAFT BONE: The Influence of Processing on Safety and Performance, Orthopedic Clinics of North America 30(4) (1999) 571-581.
[28] G. Fernandez de Grado, L. Keller, Y. Idoux-Gillet, Q. Wagner, A.M. Musset, N. Benkirane-Jessel, F. Bornert, D. Offner, Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management, J Tissue Eng 9 (2018) 2041731418776819.
[29] 台灣各年齡骨折住院人數. https://www.nhi.gov.tw/Content_List.aspx?n=D529CAC4D8F8E77B&topn=23C660CAACAA159D.
[30] J.S. O′Brien, E.L. Sampson, Lipid composition of the normal human brain: gray matter, white matter, and myelin, Journal of lipid research 6(4) (1965) 537-544.
[31] R. Daneman, A. Prat, The blood–brain barrier, Cold Spring Harbor perspectives in biology 7(1) (2015) a020412.
[32] R.J. Locher, T. Lünnemann, A. Garbe, K. Schaser, K. Schmidt-Bleek, G. Duda, S. Tsitsilonis, Traumatic brain injury and bone healing: radiographic and biomechanical analyses of bone formation and stability in a combined murine trauma model, J Musculoskelet Neuronal Interact 15(4) (2015) 309-15.
[33] C. Zhang, K. Deng, Y. Guo, Z. Wang, G. Yu, [Research progress of correlation between traumatic brain injury and fracture healing], Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 31(7) (2017) 885-889.
[34] H. Huang, W.-X. Cheng, Y.-P. Hu, J.-H. Chen, Z.-T. Zheng, P. Zhang, Relationship between heterotopic ossification and traumatic brain injury: Why severe traumatic brain injury increases the risk of heterotopic ossification, Journal of Orthopaedic Translation 12 (2018) 16-25.
[35] S.J. Song, C.N. Pagel, T.M. Campbell, R.N. Pike, E.J. Mackie, The role of protease-activated receptor-1 in bone healing, Am J Pathol 166(3) (2005) 857-68.
[36] W. Xia, J. Xie, Z. Cai, X. Liu, J. Wen, Z.K. Cui, R. Zhao, X. Zhou, J. Chen, X. Mao, Z. Gu, Z. Zou, Z. Zou, Y. Zhang, M. Zhao, M. Mac, Q. Song, X. Bai, Damaged brain accelerates bone healing by releasing small extracellular vesicles that target osteoprogenitors, Nat Commun 12(1) (2021) 6043.
[37] F.H. Gage, Cell therapy, Nature 392(6679 Suppl) (1998) 18-24.
[38] B.E. Strauer, R. Kornowski, Stem cell therapy in perspective, Circulation 107(7) (2003) 929-934.
[39] M. Sato, M. Yamato, G. Mitani, T. Takagaki, K. Hamahashi, Y. Nakamura, M. Ishihara, R. Matoba, H. Kobayashi, T. Okano, J. Mochida, M. Watanabe, Combined surgery and chondrocyte cell-sheet transplantation improves clinical and structural outcomes in knee osteoarthritis, npj Regenerative Medicine 4(1) (2019) 4.
[40] 還我健康的腦-重建腦神經血管組織之幹細胞層片, 2018. https://innoaward.taiwan-healthcare.org/award_detail.php?REFDOCTYPID=0mgfrvtcrys9qdy4&NumID=0oixuy260jqlagj5&Num=&num=1&REFDOCID=0pjkd7qrmettt2ng.
[41] M. Kapałczyńska, T. Kolenda, W. Przybyła, M. Zajączkowska, A. Teresiak, V. Filas, M. Ibbs, R. Bliźniak, Ł. Łuczewski, K. Lamperska, 2D and 3D cell cultures–a comparison of different types of cancer cell cultures, Archives of Medical Science 14(4) (2018) 910-919.
[42] G.S. Hussey, J.L. Dziki, S.F. Badylak, Extracellular matrix-based materials for regenerative medicine, Nature Reviews Materials 3(7) (2018) 159-173.
[43] B. Zhang, A. Korolj, B.F.L. Lai, M. Radisic, Advances in organ-on-a-chip engineering, Nature Reviews Materials 3(8) (2018) 257-278.
[44] J. Sun, H. Tan, Alginate-Based Biomaterials for Regenerative Medicine Applications, Materials (Basel) 6(4) (2013) 1285-1309.
[45] K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications, Progress in polymer science 37(1) (2012) 106-126.
[46] C.K. Kuo, P.X. Ma, Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties, Biomaterials 22(6) (2001) 511-521.
[47] J.A. Rowley, G. Madlambayan, D.J. Mooney, Alginate hydrogels as synthetic extracellular matrix materials, Biomaterials 20(1) (1999) 45-53.
[48] K.I. Draget, G. Skjåk-Braek, O. Smidsrød, Alginate based new materials, Int J Biol Macromol 21(1-2) (1997) 47-55.
[49] C.Y. Chen, C.J. Ke, K.C. Yen, H.C. Hsieh, J.S. Sun, F.H. Lin, 3D porous calcium-alginate scaffolds cell culture system improved human osteoblast cell clusters for cell therapy, Theranostics 5(6) (2015) 643-55.
[50] R.S.G. Silva, S.F. Bandeira, L.A.A. Pinto, Characteristics and chemical composition of skins gelatin from cobia (Rachycentron canadum), LWT - Food Science and Technology 57(2) (2014) 580-585.
[51] S. Rungsiyanont, N. Dhanesuan, S. Swasdison, S. Kasugai, Evaluation of biomimetic scaffold of gelatin-hydroxyapatite crosslink as a novel scaffold for tissue engineering: biocompatibility evaluation with human PDL fibroblasts, human mesenchymal stromal cells, and primary bone cells, J Biomater Appl 27(1) (2012) 47-54.
[52] G. Yang, Z. Xiao, H. Long, K. Ma, J. Zhang, X. Ren, J. Zhang, Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods, Scientific Reports 8(1) (2018) 1616.
[53] Y. Liu, R. Weng, W. Wang, X. Wei, J. Li, X. Chen, Y. Liu, F. Lu, Y. Li, Tunable physical and mechanical properties of gelatin hydrogel after transglutaminase crosslinking on two gelatin types, International Journal of Biological Macromolecules 162 (2020) 405-413.
[54] F. Berthiaume, M.L. Yarmush, Tissue Engineering, in: R.A. Meyers (Ed.), Encyclopedia of Physical Science and Technology (Third Edition), Academic Press, New York, 2003, pp. 817-842.
[55] N. Almouemen, H. Kelly, C. O′Leary, Tissue Engineering: Understanding the Role of Biomaterials and Biophysical Forces on Cell Functionality Through Computational and Structural Biotechnology Analytical Methods, Computational and Structural Biotechnology Journal 17 (2019).
[56] H. Shin, S. Jo, A.G. Mikos, Biomimetic materials for tissue engineering, Biomaterials 24(24) (2003) 4353-4364.
[57] R. Lanza, R. Langer, J.P. Vacanti, A. Atala, Principles of tissue engineering, Academic press2020.
[58] R. Portner, S. Nagel-Heyer, C. Goepfert, P. Adamietz, N.M. Meenen, Bioreactor design for tissue engineering, J Biosci Bioeng 100(3) (2005) 235-45.
[59] M. Shachar, S. Cohen, Cardiac Tissue Engineering, Ex-Vivo: Design Principles in Biomaterials and Bioreactors, Heart Failure Reviews 8(3) (2003) 271-276.
[60] I. Martin, D. Wendt, M. Heberer, The role of bioreactors in tissue engineering, Trends Biotechnol 22(2) (2004) 80-6.
[61] G.K. Naughton, From lab bench to market: critical issues in tissue engineering, Ann N Y Acad Sci 961 (2002) 372-85.
[62] Y.W. Su, R. Chung, C.S. Ruan, S.M. Chim, V. Kuek, P.P. Dwivedi, M. Hassanshahi, K.M. Chen, Y. Xie, L. Chen, B.K. Foster, V. Rosen, X.F. Zhou, J. Xu, C.J. Xian, Neurotrophin-3 Induces BMP-2 and VEGF Activities and Promotes the Bony Repair of Injured Growth Plate Cartilage and Bone in Rats, J Bone Miner Res 31(6) (2016) 1258-74.
[63] K. Morioka, Y. Marmor, J.A. Sacramento, A. Lin, T. Shao, K.R. Miclau, D.R. Clark, M.S. Beattie, R.S. Marcucio, T. Miclau, 3rd, A.R. Ferguson, J.C. Bresnahan, C.S. Bahney, Differential fracture response to traumatic brain injury suggests dominance of neuroinflammatory response in polytrauma, Sci Rep 9(1) (2019) 12199.
[64] C. Yang, C. Gao, N. Liu, Y. Zhu, X. Zhu, X. Su, Q. Zhang, Y. Wu, C. Zhang, A. Liu, W. Lin, L. Tao, H. Yang, J. Lin, The effect of traumatic brain injury on bone healing from a novel exosome centered perspective in a mice model, J Orthop Translat 30 (2021) 70-81.
[65] C.H. Chou, J.D. Sinden, P.O. Couraud, M. Modo, In vitro modeling of the neurovascular environment by coculturing adult human brain endothelial cells with human neural stem cells, PLoS One 9(9) (2014) e106346.
[66] C.Y. Chen, T.S. Chiang, L.L. Chiou, H.S. Lee, F.H. Lin, 3D cell clusters combined with a bioreactor system to enhance the drug metabolism activities of C3A hepatoma cell lines, J Mater Chem B 4(43) (2016) 7000-7008.
[67] C.H. Chou, M. Modo, Characterization of gene expression changes in human neural stem cells and endothelial cells modeling a neurovascular microenvironment, Brain Res Bull 158 (2020) 9-19.
[68] C.H. Chou, M. Modo, Human neural stem cell-induced endothelial morphogenesis requires autocrine/paracrine and juxtacrine signaling, Sci Rep 6 (2016) 29029.
[69] N. Lall, C.J. Henley-Smith, M.N. De Canha, C.B. Oosthuizen, D. Berrington, Viability reagent, PrestoBlue, in comparison with other available reagents, utilized in cytotoxicity and antimicrobial assays, International journal of microbiology 2013 (2013).
[70] P. Müller, U. Bulnheim, A. Diener, F. Lüthen, M. Teller, E.D. Klinkenberg, H.G. Neumann, B. Nebe, A. Liebold, G. Steinhoff, Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells, Journal of cellular and molecular medicine 12(1) (2008) 281-291.
[71] M.K. Long H, Xiao Z, Ren X, Yang G. 2017. Preparation and characteristics of gelatin sponges crosslinked by microbial transglutaminase. PeerJ 5:e3665, Long H, Ma K, Xiao Z, Ren X, Yang G. 2017. Preparation and characteristics of gelatin sponges crosslinked by microbial transglutaminase. PeerJ 5:e3665.
[72] Z.-Y. Jiang, J.V. Hunt, S.P. Wolff, Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein, Analytical biochemistry 202(2) (1992) 384-389.
[73] J.H. Schefe, K.E. Lehmann, I.R. Buschmann, T. Unger, H. Funke-Kaiser, Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula, Journal of molecular medicine 84(11) (2006) 901-910.
[74] V. Benes, M. Castoldi, Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available, Methods 50(4) (2010) 244-249.
[75] A. Ślósarczyk, Z. Paszkiewicz, C. Paluszkiewicz, FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods, Journal of Molecular Structure 744-747 (2005) 657-661.
指導教授 陳靖昀 周中興(Ching-Yun Chen Chung-Hsing Chou) 審核日期 2022-9-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明