參考文獻 |
[1] T.D. White, P.A. Folkens, The human bone manual, Elsevier2005.
[2] J.A. Buckwalter, R.R. Cooper, Bone structure and function, Instr Course Lect 36 (1987) 27-48.
[3] N.H. Hart, S. Nimphius, T. Rantalainen, A. Ireland, A. Siafarikas, R.U. Newton, Mechanical basis of bone strength: influence of bone material, bone structure and muscle action, J Musculoskelet Neuronal Interact 17(3) (2017) 114-139.
[4] C. Rey, C. Combes, C. Drouet, M.J. Glimcher, Bone mineral: update on chemical composition and structure, Osteoporosis International 20(6) (2009) 1013-1021.
[5] A. Augello, C. De Bari, The regulation of differentiation in mesenchymal stem cells, Human gene therapy 21(10) (2010) 1226-1238.
[6] L. Song, N.E. Webb, Y. Song, R.S. Tuan, Identification and functional analysis of candidate genes regulating mesenchymal stem cell self-renewal and multipotency, Stem Cells 24(7) (2006) 1707-18.
[7] M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, E. Horwitz, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy 8(4) (2006).
[8] S.L. Teitelbaum, Osteoclasts: What Do They Do and How Do They Do It?, The American Journal of Pathology 170(2) (2007) 427-435.
[9] S.L. Teitelbaum, Bone Resorption by Osteoclasts, Science 289(5484) (2000) 1504-1508.
[10] M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, E. Horwitz, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy 8(4) (2006) 315-7.
[11] J.C. Gerlach, C. Johnen, C. Ottomann, K. Bräutigam, J. Plettig, C. Belfekroun, S. Münch, B. Hartmann, Method for autologous single skin cell isolation for regenerative cell spray transplantation with non-cultured cells, Int J Artif Organs 34(3) (2011) 271-9.
[12] J. He, Y. Liu, T. Zhu, J. Zhu, F. Dimeco, A.L. Vescovi, J.A. Heth, K.M. Muraszko, X. Fan, D.M. Lubman, CD90 is identified as a candidate marker for cancer stem cells in primary high-grade gliomas using tissue microarrays, Mol Cell Proteomics 11(6) (2012) M111.010744.
[13] C.M. Kolf, E. Cho, R.S. Tuan, Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation, Arthritis Res Ther 9(1) (2007) 204.
[14] Z. Tang, X. Li, Y. Tan, H. Fan, X. Zhang, The material and biological characteristics of osteoinductive calcium phosphate ceramics, Regenerative Biomaterials 5 (2017).
[15] H.C. Tenenbaum, K. Palangio, Phosphoethanolamine- and fructose 1,6-diphosphate-induced calcium uptake in bone formed in vitro, Bone Miner 2(3) (1987) 201-10.
[16] A.L. Boskey, T.M. Wright, R.D. Blank, Collagen and Bone Strength, Journal of Bone and Mineral Research 14(3) (1999) 330-335.
[17] S. Pregizer, S.K. Baniwal, X. Yan, Z. Borok, B. Frenkel, Progressive recruitment of Runx2 to genomic targets despite decreasing expression during osteoblast differentiation, J Cell Biochem 105(4) (2008) 965-70.
[18] K. Nakashima, X. Zhou, G. Kunkel, Z. Zhang, J.M. Deng, R.R. Behringer, B. de Crombrugghe, The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation, Cell 108(1) (2002) 17-29.
[19] H.S. Shapiro, J. Chen, J.L. Wrana, Q. Zhang, M. Blum, J. Sodek, Characterization of Porcine Bone Sialoprotein: Primary Structure and Cellular Expression, Matrix 13(6) (1993) 431-440.
[20] J. Wei, G. Karsenty, An overview of the metabolic functions of osteocalcin, Current osteoporosis reports 13(3) (2015) 180-185.
[21] J. Sodek, B. Ganss, M. McKee, Osteopontin, Critical Reviews in Oral Biology & Medicine 11(3) (2000) 279-303.
[22] B. Ganss, R.H. Kim, J. Sodek, Bone sialoprotein, Critical Reviews in Oral Biology & Medicine 10(1) (1999) 79-98.
[23] E.H. Burger, J. Klein-Nulend, Responses of Bone Cells to Biomechanical Forces in Vitro, Advances in Dental Research 13(1) (1999) 93-98.
[24] M. Pfeiffenberger, A. Damerau, A. Lang, F. Buttgereit, P. Hoff, T. Gaber, Fracture Healing Research-Shift towards In Vitro Modeling?, Biomedicines 9(7) (2021).
[25] P. Baldwin, D.J. Li, D.A. Auston, H.S. Mir, R.S. Yoon, K.J. Koval, Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery, J Orthop Trauma 33(4) (2019) 203-213.
[26] C. Myeroff, M. Archdeacon, Autogenous bone graft: donor sites and techniques, J Bone Joint Surg Am 93(23) (2011) 2227-36.
[27] T. Boyce, J. Edwards, N. Scarborough, ALLOGRAFT BONE: The Influence of Processing on Safety and Performance, Orthopedic Clinics of North America 30(4) (1999) 571-581.
[28] G. Fernandez de Grado, L. Keller, Y. Idoux-Gillet, Q. Wagner, A.M. Musset, N. Benkirane-Jessel, F. Bornert, D. Offner, Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management, J Tissue Eng 9 (2018) 2041731418776819.
[29] 台灣各年齡骨折住院人數. https://www.nhi.gov.tw/Content_List.aspx?n=D529CAC4D8F8E77B&topn=23C660CAACAA159D.
[30] J.S. O′Brien, E.L. Sampson, Lipid composition of the normal human brain: gray matter, white matter, and myelin, Journal of lipid research 6(4) (1965) 537-544.
[31] R. Daneman, A. Prat, The blood–brain barrier, Cold Spring Harbor perspectives in biology 7(1) (2015) a020412.
[32] R.J. Locher, T. Lünnemann, A. Garbe, K. Schaser, K. Schmidt-Bleek, G. Duda, S. Tsitsilonis, Traumatic brain injury and bone healing: radiographic and biomechanical analyses of bone formation and stability in a combined murine trauma model, J Musculoskelet Neuronal Interact 15(4) (2015) 309-15.
[33] C. Zhang, K. Deng, Y. Guo, Z. Wang, G. Yu, [Research progress of correlation between traumatic brain injury and fracture healing], Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 31(7) (2017) 885-889.
[34] H. Huang, W.-X. Cheng, Y.-P. Hu, J.-H. Chen, Z.-T. Zheng, P. Zhang, Relationship between heterotopic ossification and traumatic brain injury: Why severe traumatic brain injury increases the risk of heterotopic ossification, Journal of Orthopaedic Translation 12 (2018) 16-25.
[35] S.J. Song, C.N. Pagel, T.M. Campbell, R.N. Pike, E.J. Mackie, The role of protease-activated receptor-1 in bone healing, Am J Pathol 166(3) (2005) 857-68.
[36] W. Xia, J. Xie, Z. Cai, X. Liu, J. Wen, Z.K. Cui, R. Zhao, X. Zhou, J. Chen, X. Mao, Z. Gu, Z. Zou, Z. Zou, Y. Zhang, M. Zhao, M. Mac, Q. Song, X. Bai, Damaged brain accelerates bone healing by releasing small extracellular vesicles that target osteoprogenitors, Nat Commun 12(1) (2021) 6043.
[37] F.H. Gage, Cell therapy, Nature 392(6679 Suppl) (1998) 18-24.
[38] B.E. Strauer, R. Kornowski, Stem cell therapy in perspective, Circulation 107(7) (2003) 929-934.
[39] M. Sato, M. Yamato, G. Mitani, T. Takagaki, K. Hamahashi, Y. Nakamura, M. Ishihara, R. Matoba, H. Kobayashi, T. Okano, J. Mochida, M. Watanabe, Combined surgery and chondrocyte cell-sheet transplantation improves clinical and structural outcomes in knee osteoarthritis, npj Regenerative Medicine 4(1) (2019) 4.
[40] 還我健康的腦-重建腦神經血管組織之幹細胞層片, 2018. https://innoaward.taiwan-healthcare.org/award_detail.php?REFDOCTYPID=0mgfrvtcrys9qdy4&NumID=0oixuy260jqlagj5&Num=&num=1&REFDOCID=0pjkd7qrmettt2ng.
[41] M. Kapałczyńska, T. Kolenda, W. Przybyła, M. Zajączkowska, A. Teresiak, V. Filas, M. Ibbs, R. Bliźniak, Ł. Łuczewski, K. Lamperska, 2D and 3D cell cultures–a comparison of different types of cancer cell cultures, Archives of Medical Science 14(4) (2018) 910-919.
[42] G.S. Hussey, J.L. Dziki, S.F. Badylak, Extracellular matrix-based materials for regenerative medicine, Nature Reviews Materials 3(7) (2018) 159-173.
[43] B. Zhang, A. Korolj, B.F.L. Lai, M. Radisic, Advances in organ-on-a-chip engineering, Nature Reviews Materials 3(8) (2018) 257-278.
[44] J. Sun, H. Tan, Alginate-Based Biomaterials for Regenerative Medicine Applications, Materials (Basel) 6(4) (2013) 1285-1309.
[45] K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications, Progress in polymer science 37(1) (2012) 106-126.
[46] C.K. Kuo, P.X. Ma, Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties, Biomaterials 22(6) (2001) 511-521.
[47] J.A. Rowley, G. Madlambayan, D.J. Mooney, Alginate hydrogels as synthetic extracellular matrix materials, Biomaterials 20(1) (1999) 45-53.
[48] K.I. Draget, G. Skjåk-Braek, O. Smidsrød, Alginate based new materials, Int J Biol Macromol 21(1-2) (1997) 47-55.
[49] C.Y. Chen, C.J. Ke, K.C. Yen, H.C. Hsieh, J.S. Sun, F.H. Lin, 3D porous calcium-alginate scaffolds cell culture system improved human osteoblast cell clusters for cell therapy, Theranostics 5(6) (2015) 643-55.
[50] R.S.G. Silva, S.F. Bandeira, L.A.A. Pinto, Characteristics and chemical composition of skins gelatin from cobia (Rachycentron canadum), LWT - Food Science and Technology 57(2) (2014) 580-585.
[51] S. Rungsiyanont, N. Dhanesuan, S. Swasdison, S. Kasugai, Evaluation of biomimetic scaffold of gelatin-hydroxyapatite crosslink as a novel scaffold for tissue engineering: biocompatibility evaluation with human PDL fibroblasts, human mesenchymal stromal cells, and primary bone cells, J Biomater Appl 27(1) (2012) 47-54.
[52] G. Yang, Z. Xiao, H. Long, K. Ma, J. Zhang, X. Ren, J. Zhang, Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods, Scientific Reports 8(1) (2018) 1616.
[53] Y. Liu, R. Weng, W. Wang, X. Wei, J. Li, X. Chen, Y. Liu, F. Lu, Y. Li, Tunable physical and mechanical properties of gelatin hydrogel after transglutaminase crosslinking on two gelatin types, International Journal of Biological Macromolecules 162 (2020) 405-413.
[54] F. Berthiaume, M.L. Yarmush, Tissue Engineering, in: R.A. Meyers (Ed.), Encyclopedia of Physical Science and Technology (Third Edition), Academic Press, New York, 2003, pp. 817-842.
[55] N. Almouemen, H. Kelly, C. O′Leary, Tissue Engineering: Understanding the Role of Biomaterials and Biophysical Forces on Cell Functionality Through Computational and Structural Biotechnology Analytical Methods, Computational and Structural Biotechnology Journal 17 (2019).
[56] H. Shin, S. Jo, A.G. Mikos, Biomimetic materials for tissue engineering, Biomaterials 24(24) (2003) 4353-4364.
[57] R. Lanza, R. Langer, J.P. Vacanti, A. Atala, Principles of tissue engineering, Academic press2020.
[58] R. Portner, S. Nagel-Heyer, C. Goepfert, P. Adamietz, N.M. Meenen, Bioreactor design for tissue engineering, J Biosci Bioeng 100(3) (2005) 235-45.
[59] M. Shachar, S. Cohen, Cardiac Tissue Engineering, Ex-Vivo: Design Principles in Biomaterials and Bioreactors, Heart Failure Reviews 8(3) (2003) 271-276.
[60] I. Martin, D. Wendt, M. Heberer, The role of bioreactors in tissue engineering, Trends Biotechnol 22(2) (2004) 80-6.
[61] G.K. Naughton, From lab bench to market: critical issues in tissue engineering, Ann N Y Acad Sci 961 (2002) 372-85.
[62] Y.W. Su, R. Chung, C.S. Ruan, S.M. Chim, V. Kuek, P.P. Dwivedi, M. Hassanshahi, K.M. Chen, Y. Xie, L. Chen, B.K. Foster, V. Rosen, X.F. Zhou, J. Xu, C.J. Xian, Neurotrophin-3 Induces BMP-2 and VEGF Activities and Promotes the Bony Repair of Injured Growth Plate Cartilage and Bone in Rats, J Bone Miner Res 31(6) (2016) 1258-74.
[63] K. Morioka, Y. Marmor, J.A. Sacramento, A. Lin, T. Shao, K.R. Miclau, D.R. Clark, M.S. Beattie, R.S. Marcucio, T. Miclau, 3rd, A.R. Ferguson, J.C. Bresnahan, C.S. Bahney, Differential fracture response to traumatic brain injury suggests dominance of neuroinflammatory response in polytrauma, Sci Rep 9(1) (2019) 12199.
[64] C. Yang, C. Gao, N. Liu, Y. Zhu, X. Zhu, X. Su, Q. Zhang, Y. Wu, C. Zhang, A. Liu, W. Lin, L. Tao, H. Yang, J. Lin, The effect of traumatic brain injury on bone healing from a novel exosome centered perspective in a mice model, J Orthop Translat 30 (2021) 70-81.
[65] C.H. Chou, J.D. Sinden, P.O. Couraud, M. Modo, In vitro modeling of the neurovascular environment by coculturing adult human brain endothelial cells with human neural stem cells, PLoS One 9(9) (2014) e106346.
[66] C.Y. Chen, T.S. Chiang, L.L. Chiou, H.S. Lee, F.H. Lin, 3D cell clusters combined with a bioreactor system to enhance the drug metabolism activities of C3A hepatoma cell lines, J Mater Chem B 4(43) (2016) 7000-7008.
[67] C.H. Chou, M. Modo, Characterization of gene expression changes in human neural stem cells and endothelial cells modeling a neurovascular microenvironment, Brain Res Bull 158 (2020) 9-19.
[68] C.H. Chou, M. Modo, Human neural stem cell-induced endothelial morphogenesis requires autocrine/paracrine and juxtacrine signaling, Sci Rep 6 (2016) 29029.
[69] N. Lall, C.J. Henley-Smith, M.N. De Canha, C.B. Oosthuizen, D. Berrington, Viability reagent, PrestoBlue, in comparison with other available reagents, utilized in cytotoxicity and antimicrobial assays, International journal of microbiology 2013 (2013).
[70] P. Müller, U. Bulnheim, A. Diener, F. Lüthen, M. Teller, E.D. Klinkenberg, H.G. Neumann, B. Nebe, A. Liebold, G. Steinhoff, Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells, Journal of cellular and molecular medicine 12(1) (2008) 281-291.
[71] M.K. Long H, Xiao Z, Ren X, Yang G. 2017. Preparation and characteristics of gelatin sponges crosslinked by microbial transglutaminase. PeerJ 5:e3665, Long H, Ma K, Xiao Z, Ren X, Yang G. 2017. Preparation and characteristics of gelatin sponges crosslinked by microbial transglutaminase. PeerJ 5:e3665.
[72] Z.-Y. Jiang, J.V. Hunt, S.P. Wolff, Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein, Analytical biochemistry 202(2) (1992) 384-389.
[73] J.H. Schefe, K.E. Lehmann, I.R. Buschmann, T. Unger, H. Funke-Kaiser, Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula, Journal of molecular medicine 84(11) (2006) 901-910.
[74] V. Benes, M. Castoldi, Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available, Methods 50(4) (2010) 244-249.
[75] A. Ślósarczyk, Z. Paszkiewicz, C. Paluszkiewicz, FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods, Journal of Molecular Structure 744-747 (2005) 657-661. |