參考文獻 |
[1] U.N.W.p.a. 2019, United Nations Department of Economic and Social Affairs; Population Division ;2020, 2019.
[2] B. 醫療資訊團隊, 【骨折】如何急救和治療?一文睇清骨折種類、症狀和護理方法, 2020-04-20. https://www.bowtie.com.hk/blog/zh/骨折/.
[3] 港島東醫院聯網社區服務, 長者常見疾病, 2020-6-16. https://www.healthyhkec.org/healthcare/eldercare/common-diseases/.
[4] 葉峻榳, 一跌倒,骨折風險高!銀髮族骨質疏鬆別輕忽, 2016-09-06. https://www.top1health.com/Article/240/42962.
[5] 康健知識庫, 什麼是骨質疏鬆症?. https://kb.commonhealth.com.tw/library/123.html#data-3-collapse.
[6] 黃聖筑, 35歲開始流失!造成骨質疏鬆的4大原因是這些, 2018-07-06. https://heho.com.tw/archives/17267.
[7] Y. Chang, B. Cho, S. Kim, J. Kim, Direct conversion of fibroblasts to osteoblasts as a novel strategy for bone regeneration in elderly individuals, Experimental & molecular medicine 51(5) (2019) 1-8.
[8] J. Goldhahn, D. Little, P. Mitchell, N.L. Fazzalari, I.R. Reid, P. Aspenberg, D. Marsh, Evidence for anti-osteoporosis therapy in acute fracture situations—recommendations of a multidisciplinary workshop of the International Society for Fracture Repair, Elsevier, 2010, pp. 267-271.
[9] V. Campana, G. Milano, E. Pagano, M. Barba, C. Cicione, G. Salonna, W. Lattanzi, G. Logroscino, Bone substitutes in orthopaedic surgery: from basic science to clinical practice, Journal of Materials Science: Materials in Medicine 25(10) (2014) 2445-2461.
[10] S. Paderni, S. Terzi, L. Amendola, Major bone defect treatment with an osteoconductive bone substitute, Musculoskeletal Surgery 93(2) (2009) 89-96.
[11] W. Wang, K.W. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: A review, Bioactive materials 2(4) (2017) 224-247.
[12] B. Bank, Bone Bank Allografts. https://www.bonebank.com/
[13] M. Health, Spinal bone graft, (2020-07-25). https://medlineplus.gov/ency/presentations/100136_3.htm.
[14] 愛科學見真理學常識, 羥基磷灰石為代表的骨替代材料逐漸成為臨床應用的寵兒, 2021-09. http://www.ifuun.com/a20179215419959/.
[15] 百科知識, 羥基磷灰石https://www.easyatm.com.tw/wiki/羥基磷灰石.
[16] A. Khademhosseini, R. Langer, A decade of progress in tissue engineering, Nature protocols 11(10) (2016) 1775-1781.
[17] J. Walker, Skeletal system 1: the anatomy and physiology of bones, (2020-2-27).
[18] Wikipedia, Long bone. https://en.wikipedia.org/wiki/Long_bone
[19] Bone structure. https://www.sciencedirect.com/topics/materials-science/bone-structure
[20] R.A. Carano, E.H. Filvaroff, Angiogenesis and bone repair, Drug discovery today 8(21) (2003) 980-989.
[21] V. Devescovi, E. Leonardi, G. Ciapetti, E. Cenni, Growth factors in bone repair, La Chirurgia degli organi di movimento 92(3) (2008) 161-168.
[22] Y. Kubo, C.J. Wruck, A. Fragoulis, W. Drescher, H.C. Pape, P. Lichte, H. Fischer, M. Tohidnezhad, F. Hildebrand, T. Pufe, Role of Nrf2 in fracture healing: clinical aspects of oxidative stress, Calcified tissue international 105(4) (2019) 341-352.
[23] D.A. Towler, The osteogenic-angiogenic interface: novel insights into the biology of bone formation and fracture repair, Current osteoporosis reports 6(2) (2008) 67-71.
[24] V. Devescovi, E. Leonardi, G. Ciapetti, E. Cenni, Growth factors in bone repair, Chir Organi Mov 92(3) (2008) 161-8.
[25] R.C. Riddle, T.L. Clemens, Bone cell bioenergetics and skeletal energy homeostasis, Physiological Reviews (2017).
[26] X. Cao, RANKL-RANK signaling regulates osteoblast differentiation and bone formation, Bone research 6(1) (2018) 1-2.
[27] W.J. Boyle, W.S. Simonet, D.L. Lacey, Osteoclast differentiation and activation, Nature 423(6937) (2003) 337-342.
[28] T. Britannica, Editors of Encyclopaedia, Argon. Encyclopedia Britannica (2020).
[29] F.J. O′brien, Biomaterials & scaffolds for tissue engineering, Materials today 14(3) (2011) 88-95.
[30] M.S. Chapekar, Tissue engineering: challenges and opportunities, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 53(6) (2000) 617-620.
[31] C. Imashiro, M. Hirano, T. Morikura, Y. Fukuma, K. Ohnuma, Y. Kurashina, S. Miyata, K. Takemura, Detachment of cell sheets from clinically ubiquitous cell culture vessels by ultrasonic vibration, Scientific reports 10(1) (2020) 1-11.
[32] C. Chen, X. Bai, Y. Ding, I.-S. Lee, Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering, Biomaterials research 23(1) (2019) 1-12.
[33] ARSHADCHAUDRY, CELL CULTURE, THE SCIENCE CREATIVE QUARTERLY (2004-08).
[34] M. Kapalczynska, T. Kolenda, W. Przybyla, M. Zajaczkowska, A. Teresiak, V. Filas, M. Ibbs, R. Blizniak, L. Luczewski, K. Lamperska, 2D and 3D cell cultures - a comparison of different types of cancer cell cultures, Arch Med Sci 14(4) (2018) 910-919.
[35] J.C. Fontoura, C. Viezzer, F.G. Dos Santos, R.A. Ligabue, R. Weinlich, R.D. Puga, D. Antonow, P. Severino, C. Bonorino, Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance, Materials Science and Engineering: C 107 (2020) 110264.
[36] J.W. Haycock, 3D cell culture: a review of current approaches and techniques, 3D cell culture (2011) 1-15.
[37] Y. Miki, K. Ono, S. Hata, T. Suzuki, H. Kumamoto, H. Sasano, The advantages of co-culture over mono cell culture in simulating in vivo environment, The Journal of steroid biochemistry and molecular biology 131(3-5) (2012) 68-75.
[38] L. Goers, P. Freemont, K.M. Polizzi, Co-culture systems and technologies: taking synthetic biology to the next level, Journal of The Royal Society Interface 11(96) (2014) 20140065.
[39] D. Chen, S. Liu, H. Ma, X. Liang, H. Ma, X. Yan, B. Yang, J. Wei, X. Liu, Paracrine factors from adipose-mesenchymal stem cells enhance metastatic capacity through Wnt signaling pathway in a colon cancer cell co-culture model, Cancer cell international 15(1) (2015) 1-13.
[40] H. Li, J. Chang, Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect, Acta biomaterialia 9(6) (2013) 6981-6991.
[41] H. Yoshida, M. Nakamura, S. Makita, K. Hiramori, Paracrine effect of human vascular endothelial cells on human vascular smooth muscle cell proliferation: transmembrane co-culture method, Heart and vessels 11(5) (1996) 229-233.
[42] C.J. Kirkpatrick, S. Fuchs, R.E. Unger, Co-culture systems for vascularization—learning from nature, Advanced drug delivery reviews 63(4-5) (2011) 291-299.
[43] 維基百科, 旁分泌. https://zh.wikipedia.org/wiki/旁分泌.
[44] M.F. Pittenger, D.E. Discher, B.M. Péault, D.G. Phinney, J.M. Hare, A.I. Caplan, Mesenchymal stem cell perspective: cell biology to clinical progress, NPJ Regenerative medicine 4(1) (2019) 1-15.
[45] A.W. James, Review of signaling pathways governing MSC osteogenic and adipogenic differentiation, Scientifica 2013 (2013).
[46] A. Augello, C. De Bari, The regulation of differentiation in mesenchymal stem cells, (2010).
[47] M. Kassem, B.M. Abdallah, H. Saeed, Osteoblastic cells: differentiation and trans-differentiation, Archives of biochemistry and biophysics 473(2) (2008) 183-187.
[48] R. Cancedda, G. Bianchi, A. Derubeis, R. Quarto, Cell therapy for bone disease: a review of current status, Stem Cells 21(5) (2003) 610-619.
[49] P. Rosset, F. Deschaseaux, P. Layrolle, Cell therapy for bone repair, Orthopaedics & Traumatology: Surgery & Research 100(1) (2014) S107-S112.
[50] M. Herrmann, S. Verrier, M. Alini, Strategies to stimulate mobilization and homing of endogenous stem and progenitor cells for bone tissue repair, Frontiers in bioengineering and biotechnology 3 (2015) 79.
[51] M.S. Trust, Stem cells and MS - AHSCT, (2021-07).
[52] N.K. Garg, S. Gaur, S. Sharma, Percutaneous autogenous bone marrow grafting in 20 cases of ununited fracture, Acta Orthopaedica Scandinavica 64(6) (1993) 671-672.
[53] J.F. Connolly, R. Guse, J. Tiedeman, R. Dehne, Autologous marrow injection as a substitute for operative grafting of tibial nonunions, Clinical orthopaedics and related research (266) (1991) 259-270.
[54] P. Hernigou, A. Poignard, F. Beaujean, H. Rouard, Percutaneous autologous bone-marrow grafting for nonunions: influence of the number and concentration of progenitor cells, JBJS 87(7) (2005) 1430-1437.
[55] M. Mathieu, S. Rigutto, A. Ingels, D. Spruyt, N. Stricwant, I. Kharroubi, V. Albarani, M. Jayankura, J. Rasschaert, E. Bastianelli, Decreased pool of mesenchymal stem cells is associated with altered chemokines serum levels in atrophic nonunion fractures, Bone 53(2) (2013) 391-398.
[56] 衛生福利部, 衛福部9月正式開放細胞治療 嘉惠病人推動醫療生技發展, 2018-09-04. https://www.mohw.gov.tw/cp-16-43698-1.html.
[57] 衛福部, 細胞治療技術資訊專區, 2010. https://www.mohw.gov.tw/cp-4628-55268-1.html.
[58] 杜蕙容, 義大醫院攜手三顧 《特管法》自體軟骨細胞移植獲准, 2019. http://pro.metatech.com.tw/news/c75b4e92-3248-49a8-ad6e-c6a1652685e6.
[59] 衛福部, 細胞治療技術資訊專區. https://celltherapy.mohw.gov.tw/tech_search.htm.
[60] Y. Petrenko, E. Syková, Š. Kubinová, The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids, Stem cell research & therapy 8(1) (2017) 1-9.
[61] T.J. Bartosh, J.H. Ylöstalo, A. Mohammadipoor, N. Bazhanov, K. Coble, K. Claypool, R.H. Lee, H. Choi, D.J. Prockop, Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties, Proceedings of the National Academy of Sciences 107(31) (2010) 13724-13729.
[62] I.S. Park, J.-W. Rhie, S.-H. Kim, A novel three-dimensional adipose-derived stem cell cluster for vascular regeneration in ischemic tissue, Cytotherapy 16(4) (2014) 508-522.
[63] I.A. Potapova, P.R. Brink, I.S. Cohen, S.V. Doronin, Culturing of human mesenchymal stem cells as three-dimensional aggregates induces functional expression of CXCR4 that regulates adhesion to endothelial cells, Journal of Biological Chemistry 283(19) (2008) 13100-13107.
[64] S.H. Bhang, S. Lee, J.-Y. Shin, T.-J. Lee, B.-S. Kim, Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization, Tissue Engineering Part A 18(19-20) (2012) 2138-2147.
[65] L. Barile, G. Vassalli, Exosomes: Therapy delivery tools and biomarkers of diseases, Pharmacology & therapeutics 174 (2017) 63-78.
[66] T.B. Steinbichler, J. Dudás, S. Skvortsov, U. Ganswindt, H. Riechelmann, I.-I. Skvortsova, Therapy resistance mediated by exosomes, Molecular cancer 18(1) (2019) 1-11.
[67] D.G. Phinney, M.F. Pittenger, Concise review: MSC-derived exosomes for cell-free therapy, Stem cells 35(4) (2017) 851-858.
[68] M. Kim, H.-W. Yun, B.H. Choi, B.-H. Min, Three-dimensional spheroid culture increases exosome secretion from mesenchymal stem cells, Tissue engineering and regenerative medicine 15(4) (2018) 427-436.
[69] Y. Li, Q.-M. Pi, P.-C. Wang, L.-J. Liu, Z.-G. Han, Y. Shao, Y. Zhai, Z.-Y. Zuo, Z.-Y. Gong, X. Yang, Functional human 3D microvascular networks on a chip to study the procoagulant effects of ambient fine particulate matter, RSC Advances 7(88) (2017) 56108-56116.
[70] S.J. Grainger, A.J. Putnam, Assessing the permeability of engineered capillary networks in a 3D culture, PLoS One 6(7) (2011) e22086.
[71] M. Grellier, N. Ferreira‐Tojais, C. Bourget, R. Bareille, F. Guillemot, J. Amédée, Role of vascular endothelial growth factor in the communication between human osteoprogenitors and endothelial cells, Journal of cellular biochemistry 106(3) (2009) 390-398.
[72] H. Li, R. Daculsi, M. Grellier, R. Bareille, C. Bourget, M. Remy, J. Amedee, The role of vascular actors in two dimensional dialogue of human bone marrow stromal cell and endothelial cell for inducing self-assembled network, PloS one 6(2) (2011) e16767.
[73] H. Peng, A. Usas, A. Olshanski, A.M. Ho, B. Gearhart, G.M. Cooper, J. Huard, VEGF improves, whereas sFlt1 inhibits, BMP2‐induced bone formation and bone healing through modulation of angiogenesis, Journal of Bone and Mineral Research 20(11) (2005) 2017-2027.
[74] S.J. Bidarra, C.C. Barrias, M.A. Barbosa, R. Soares, J. Amédée, P.L. Granja, Phenotypic and proliferative modulation of human mesenchymal stem cells via crosstalk with endothelial cells, Stem cell research 7(3) (2011) 186-197.
[75] D.N. Heo, M. Hospodiuk, I.T. Ozbolat, Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering, Acta biomaterialia 95 (2019) 348-356.
[76] M. Bruchet, A. Melman, Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange, Carbohydrate polymers 131 (2015) 57-64.
[77] D.R. Sahoo, T. Biswal, Alginate and its application to tissue engineering, SN Applied Sciences 3(1) (2021) 1-19.
[78] K. Dong, X. Wang, Y. Shen, Y. Wang, B. Li, C. Cai, L. Shen, Y. Guo, Maintaining Inducibility of Dermal Follicle Cells on Silk Fibroin/Sodium Alginate Scaffold for Enhanced Hair Follicle Regeneration, Biology 10(4) (2021) 269.
[79] J. Kim, K. Kennedy, G. Vunjak-Novakovic, Bioreactors in regenerative medicine, Principles of Regenerative Medicine, Elsevier2019, pp. 787-803.
[80] D.A. Gaspar, V. Gomide, F.J. Monteiro, The role of perfusion bioreactors in bone tissue engineering, Biomatter 2(4) (2012) 167-175.
[81] Y. Park, S.T. Ji, U. Yong, S. Das, W.B. Jang, G. Ahn, S.-M. Kwon, J. Jang, 3D bioprinted tissue-specific spheroidal multicellular microarchitectures for advanced cell therapy, Biofabrication 13(4) (2021) 045017.
[82] N. Chaicharoenaudomrung, P. Kunhorm, W. Promjantuek, N. Heebkaew, N. Rujanapun, P. Noisa, Fabrication of 3D calcium‐alginate scaffolds for human glioblastoma modeling and anticancer drug response evaluation, Journal of cellular physiology 234(11) (2019) 20085-20097.
[83] C.-Y. Chen, C.-J. Ke, K.-C. Yen, H.-C. Hsieh, J.-S. Sun, F.-H. Lin, 3D porous calcium-alginate scaffolds cell culture system improved human osteoblast cell clusters for cell therapy, Theranostics 5(6) (2015) 643.
[84] 昶安生技有限公司, 粒線體功能與活性分析 Mitochondrion functional test. https://www.exbio.com.tw/blog/粒線體功能與活性分析-mitochondrion-functional-test-70.html.
[85] 泰鼎生物科技有限公司, 細線體活性分析mitochrondria-assay. http://biopioneer.com.tw/?news=【-粒線體活性分析】mitochrondria-assay-系列商品.
[86] L.C. Crowley, B.J. Marfell, N.J. Waterhouse, Analyzing cell death by nuclear staining with Hoechst 33342, Cold Spring Harbor Protocols 2016(9) (2016) pdb. prot087205.
[87] 太鼎生物科技有限公司, Calcein-am活細胞螢光染劑. http://biopioneer.com.tw/?news=【calcein-am-活細胞螢光染劑】calcein-am-cell-viability-assay-kit-貨號1755-250.
[88] 太鼎生物科技有限公司, PI-Propidium iodide死細胞核酸染劑. http://biopioneer.com.tw/?p=6269.
[89] A. Stuart, D. Smith, Use of the fluorochromes xylenol orange, calcein green, and tetracycline to document bone deposition and remodeling in healing fractures in chickens, Avian diseases (1992) 447-449.
[90] Y.H. Wang, Y. Liu, P. Maye, D.W. Rowe, Examination of mineralized nodule formation in living osteoblastic cultures using fluorescent dyes, Biotechnology progress 22(6) (2006) 1697-1701.
[91] 葉柏安, 共軛焦顯微鏡的使用原理, 2009-03-16 https://highscope.ch.ntu.edu.tw/wordpress/?p=917.
[92] 維基百科, 共軛焦顯微鏡. https://zh.wikipedia.org/zh-tw/共聚焦显微镜.
[93] 精志科技, 掃描電子顯微鏡原理. https://www.amtech.com.tw/custom_85383.html.
[94] 維基百科, 掃描電子顯微鏡. https://zh.wikipedia.org/zh-tw/扫描电子显微镜.
[95] 楊仲準, C.-C. Yang, X 光繞射分析技術與應用 X-ray Diffraction Analysis: Techniques and Applications, 2011-06. https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/182/01820640.pdf.
[96] 維基百科, 布拉格定律. https://zh.wikipedia.org/zh-tw/布拉格定律.
[97] 台美檢驗, Real-time PCR食品檢測. https://www.superlab.com.tw/real_time_pcr/.
[98] 維基百科, 即時聚合酶連鎖反應. https://zh.wikipedia.org/zh-tw/即時聚合酶鏈式反應.
[99] C. Feng, L. Xiao, J. Yu, D. Li, T. Tang, W. Liao, Z. Wang, A. Lu, Simvastatin promotes osteogenic differentiation of mesenchymal stem cells in rat model of osteoporosis through BMP-2/Smads signaling pathway, Eur Rev Med Pharmacol Sci 24(1) (2020) 434-43.
[100] C.-Y. Chen, T.-S. Chiang, L.-L. Chiou, H.-S. Lee, F.-H. Lin, 3D cell clusters combined with a bioreactor system to enhance the drug metabolism activities of C3A hepatoma cell lines, Journal of Materials Chemistry B 4(43) (2016) 7000-7008.
[101] RRUFF, Hydroxylapatite R060180. https://rruff.info/hydroxylapatite/R060180 |