博碩士論文 105887001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:112 、訪客IP:18.226.180.122
姓名 高馨柔(Hsin-Jou Kao)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 微生物作為天然益生菌產生發酵代謝物改善常見皮膚問題
相關論文
★ 足弓指標參數之比較分析★ 運用腦電波研究中風病人的復健成效 與持續情形
★ 重複間斷性Theta爆發刺激對手部運動之腦波的影響★ Amylose mediated electricity production of Staphylococcus epidermidis for inhibition of Cutibacterium acnes growth
★ 使用虛擬實境系統誘發事件相關電位P300之研究★ 虛擬實境誘發體感覺事件相關電位P300之動態因果模型研究
★ 使用GPU提升事件相關電位之動態因果模型的運算效能★ 基於動態因果模型之老化相關的運動網路研究
★ 應用腦電圖預測中風病人復健情況★ 以益智遊戲進行空間工作記憶訓練在事件相關電位P3上的影響
★ 基於虛擬實境復健之中風後運動網路功能性重組研究★ 應用腦電圖與相關臨床因子預測中風病人復原之研究
★ 中風復健後與虛擬實境物理參數 相關的動作網絡重組★ 以運動指標預測復健成效暨設計復健方針
★ 運用時頻轉換分析方法研究 工作記憶訓練之人類大腦可塑性★ 中風患者在復健後的大腦神經連結的變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-20以後開放)
摘要(中) 人類皮膚表面蘊含無數種類的微生物定植,利用空間與養分的競爭達到平衡保持健康狀態,當外在壓力或環境改變破壞平衡時便會產生疾病。常見的皮膚問題種類繁多,本研究針對紫外線照射所導致的黑色素累積產生皮膚色素沉著過度的美學問題做了探討,其中以「痤瘡丙酸桿菌發酵產生丙酸改善紫外線B誘導的黑色素合成Propionic acid produced by Cutibacterium acnes fermentation ameliorates ultraviolet B‑induced melanin synthesis」為題,目前市面上經常使用化學美白產品來治療和預防。然而,此類產品相關的安全問題促使尋找天然和無害的替代品。本題旨在評估天然的益生菌通過發酵代謝產物以減少皮膚色素沉著。實驗結果顯示,在痤瘡丙酸桿菌(Cutibacterium acnes, C. acnes)與泊洛沙姆(Pluronic F68, PF68)共培養的發酵培養基中可以檢測到短鏈脂肪酸(Short-chain fatty acids, SCFAs),其中丙酸(CH3CH2COOH, PA )是濾液中含量最高的脂肪酸,並通過與游離脂肪酸受體2 (free fatty acid receptor 2, FFAR2)顯著抑制細胞內酪氨酸酶(tyrosinase, TYR)活性進而減少多巴陽性黑色素細胞(DOPA-positive melanocytes)。此外,在丙酸對小鼠黑色素瘤细胞(B16F10)存活率試驗中,以4 mM丙酸處理並不會造成黑色素細胞的凋亡。在體內試驗中,注射了C. acnes和PF68混合物的小鼠耳部皮膚組織中也觀察到多巴陽性黑色素細胞和TYR活性降低。總體而言,本研究是一種有效的過度色素沉著解決方案,C. acnes作為益生菌通過使用發酵引發劑PF68介導產生丙酸,藉由丙酸-FFAR2- TYR途徑的參與抑制黑色素的生成,並且不會造成細胞損傷和破壞皮膚微生物組的平衡。這項研究結果有利於未來色素沉著障礙的臨床治療和開發化妝品與美白產品的應用範圍。
另外以「蜂蜜益生菌循環芽孢桿菌轉移的細胞外電子抑制炎症性尋常痤瘡Extracellular Electrons Transferred from Honey Probiotic Bacillus circulans Inhibits Inflammatory acne vulgaris」為題探討蜂蜜中的微生物在人類皮膚疾病上的利用,環狀芽孢桿菌(Bacillus circulans, B. circulans)是被廣泛用作微生物燃料電池(microbial fuel cell, MFC)技術中的產電細菌。這項研究評估了B. circulans是否可以透過葡萄糖發酵來發電並減輕人類皮膚病原體C. acnes的影響。將B. circulans與葡萄糖共培養的培養液通過測量電壓差來檢查發酵產生的電量,並且使用螯合鐵離子能力測定(Ferrozine assay)進行驗證。與對照組相比,添加2%葡萄糖與B. circulans的發酵液中電壓增加到約4 mV。Ferrozine assay結果顯示發酵液中產生電子使反應溶液呈現深棕色。在體外試驗中,葡萄糖與B. circulans共培養提高了發電量並顯著抑制了C. acnes的生長。此外,添加玫瑰黃素顯著降低了B. circulans通過發酵葡萄糖代謝產生的電能,並且在動物實驗中恢復了C. acnes計數和解脂酶誘導的巨噬細胞炎症蛋白2 (Macrophage inflammatory protein-2, MIP-2)水平。總體而言,這項研究揭示了蜂蜜中的益生菌B. circulans通過使用葡萄糖作為益生元來產生電能的分子機制。B. circulans通過黄素單核苷酸(Flavin mononucleotide, FMN)核糖開關和黃素介導的電子轉移干擾C. acnes的生長,從而減少炎症反應。因此,微生物通過碳源發酵的代謝活動從生物質中產生電能可能是一種潛在的抗菌療法並且有利於未來痤瘡皮膚病的臨床治療和護膚品的開發。
本研究透過微生物作為天然益生菌產生發酵代謝物改善常見皮膚問題,C. acnes作為人類皮膚常見微生物透過PF68發酵代謝產生丙酸,改善紫外線造成的黑色素過度沉著;天然蜂蜜中的微生物B. circulans透過葡萄糖發酵產生電子治療抑制炎症性尋常痤瘡。
摘要(英) The human skin surface is colonized by all manner of microorganisms, which maintain a healthy state by balancing the space and nutrients. Exogenous changes like pressure or environmental factors will result in skin disorders or infections. There are many kinds of common skin problems. This study investigated the ultraviolet (UV) irradiation induces melanin accumulation, which caused the aesthetic problem of hyperpigmentation. The first chapter, "Propionic acid produced by Cutibacterium acnes fermentation ameliorates ultraviolet B‑induced melanin synthesis." At present most whitening products on the market are going to have a chemical composition. However, the associated safety concerns of such products have prompted the search for natural and harmless alternatives. This study aimed to identify natural fermentation metabolites to reduce skin pigmentation. The result shows that metabolite propionic acid (PA) was the most abundant fatty acid in the filtrate from PF68 fermentation of C. acnes and reduced the DOPA-positive melanocytes by significantly inhibiting cellular TYR activity via binding to the FFAR2. Moreover, the effects of PA on B16F10 melanoma cells evaluated by BrdU labeling that 4 mM PA treatment did not alter melanocyte proliferation and cellular damage. In in vivo results, the reduced DOPA-positive melanocytes and TYR activity were also observed in mice ear skin tissue injected with a mixture of C. acnes and PF68. Overall, we indicate that this study is an effective solution for hyperpigmentation. C. acnes as a probiotic can produce PA to inhibit melanogenesis through PF68, the fermentation inducer, and suggests the involvement of the PA-FFAR2-TYR pathway. These results are beneficial for the future clinical treatment of pigmentation disorders and to develop cosmetics that increases the range of applications of whitening products.
In the second chapter, we investigate the utilization of microorganisms in honey for human skin diseases, "Extracellular Electrons Transferred from Honey Probiotic Bacillus circulans Inhibits Inflammatory acne vulgaris." B. circulans is widely used as an electrogenic bacterium in MFC technology. This study evaluated whether B. circulans can ferment glucose to generate electricity and mitigate the effects of C. acnes, human skin pathogens. The electricity production of B. circulans was examined by measuring the voltage difference and verified using a ferrozine assay. Compared with the control, the voltage significantly increased to approximately 4 mV in the B. circulans with 2% glucose group. The result of the ferrozine assay shows that fermentation reaction medium formed the dark brown solution through electron production. In vitro results demonstrated that the glucose-B. circulans co-culture enhanced electricity production and significantly supressed C. acnes growth. In addition, the addition of roseoflavin to inhibit flavin production considerably reduced the electrical energy generated by B. circulans through metabolism and, in animal tests, recovered C. acnes count and MIP-2 levels. Overall, this study revealed the molecular mechanism by which the probiotic B. circulans in honey can generate electrical energy by using glucose as a prebiotic. B. circulans reduced the inflammatory response by disrupting C. acnes growth through FMN riboswitch and flavin-mediated electron transfer. Therefore, generating electrical energy from biomass through the metabolic activities of microorganisms may be a potential antimicrobial therapy. These results are beneficial for the future clinical treatment of acne-prone skin disorders and to development of skincare products.
This article focuses on microbes being natural probiotics that produce fermentation metabolites to improve common skin problems. C. acnes is a common microorganism in human skin that can produce PA to inhibit melanogenesis through PF68. B. circulans in honey can generate electrical energy to treat inflammatory acne vulgaris by using glucose.
關鍵字(中) ★ 微生物
★ 益生菌
★ 發酵代謝物
★ 黑色素過度沉著
★ 痤瘡
關鍵字(英)
論文目次 摘 要 VII
ABSTRACT IX
誌 謝 XI
圖 目 錄 XV
縮 寫 說 明 1
第壹章 痤瘡丙酸桿菌發酵產生丙酸改善紫外線B誘導的黑色素合成 3
一、緒論 3
1-1-1 研究背景 3
1-1-2 研究動機與目的 6
二、研究內容與方法 7
1-2-1 研究架構 7
1-2-2 微生物特性 8
1-2-2-1 C. acnes 8
1-2-3 C. ACNES與PF68共培養之相關試驗 8
1-2-3-1 C. acnes藉由PF68產生發酵反應後,發酵菌液進行酚紅指示劑分析 8
1-2-3-2 C. acnes與PF68共培養後,發酵菌液進行GC-MS分析 8
1-2-3-3 PF68對C. acnes之MBC試驗 8
1-2-4 體外試驗 9
1-2-4-1 黑色素瘤细胞培養 9
1-2-4-2 PA對黑色素瘤细胞乙醯化離胺酸表達試驗 9
1-2-4-3 PA抑制小鼠黑色素瘤細胞中TYR基因表達試驗 9
1-2-4-4 PA、乙酸(Acetic acid, AA)於小鼠黑色素瘤細胞中對黑色素生成之影響 10
1-2-4-5 PA影響黑色素瘤细胞存活率試驗 10
1-2-4-6 FFAR2基因敲除後PA影響黑色素瘤细胞TYR活性測試 10
1-2-5 體內試驗 10
1-2-5-1 C. acnes藉由PF68發酵於小鼠耳朵抑制黑色素生成試驗 10
1-2-5-2 PA於小鼠耳朵抑制黑色素生成試驗 11
1-2-5-3 FFAR2 siRNA阻斷FFAR2於小鼠耳朵對PA抑制黑色素生成試驗 12
1-2-5-4 西方墨點法(Western blot)檢測FFAR2 siRNA阻斷FFAR2於小鼠耳朵試驗 12
1-2-6 統計分析 13
三、結果與討論 15
1-3-1 C. ACNES與PF68共培養之相關試驗 15
1-3-1-1 C. acnes藉由PF68產生發酵反應後,發酵菌液進行酚紅指示劑分析 15
1-3-1-2 C. acnes與PF68共培養後,發酵菌液進行GC-MS分析 15
1-3-1-3 PF68對C. acnes之MBC試驗 16
1-3-2 體外試驗 17
1-3-2-1 PA對黑色素瘤细胞乙醯化離胺酸表達試驗 17
1-3-2-2 PA抑制小鼠黑色素瘤細胞中TYR基因表達試驗 17
1-3-2-3 PA、AA對小鼠黑色素瘤細胞中黑色素生成之影響 18
1-3-2-4 PA影響小鼠黑色素瘤细胞存活率試驗 18
1-3-3-1 C. acnes藉由PF68發酵於小鼠耳朵抑制黑色素生成試驗 20
1-3-3-2 PA於小鼠耳朵抑制黑色素生成試驗 20
1-3-3-3 FFAR2 siRNA阻斷FFAR2於小鼠耳朵對PA抑制黑色素生成試驗 21
1-3-3-4 FFAR2 siRNA阻斷FFAR2於小鼠耳朵後,PA對TYR活性測試 22
1-3-3-5 Western blot檢測FFAR2 siRNA阻斷FFAR2於小鼠耳朵試驗 23
四、結論 24
一、緒論 25
2-1-1 研究背景 25
2-1-2 研究動機與目的 28
二、研究內容與方法 30
2-2-1 研究架構 30
2-2-2 微生物特性 31
2-2-2-1 B. circulans 31
2-2-3 B. CIRCULANS與葡萄糖共培養之相關試驗 31
2-2-3-1 B. circulans藉由葡萄糖產生發酵反應 31
2-2-3-2 B. circulans與葡萄糖共培養後,發酵菌液進行MFC系統的產電量分析 31
2-2-3-3 Ferrozine assay 31
2-2-4 體外試驗 31
2-2-4-1 B. circulans藉由葡萄糖發酵產生電子抑制C. acnes生長 32
2-2-5 體內試驗 32
2-2-5-1 玫瑰黃素抑制B. circulans藉由葡萄糖發酵產生電子,影響C. acnes生長 32
2-2-5-2 解脂酶誘導促炎性細胞因子MIP-2表現 32
2-2-5-3 玫瑰黃素抑制B. circulans藉由葡萄糖發酵產生電子,影響C. acnes解脂酶誘導促炎性細胞因子MIP-2表現 32
2-2-5-3-1 ELISA 32
2-2-6 統計分析 32
三、結果與討論 34
2-3-1 分離蜂蜜中微生物進行16S RRNA測序 34
2-3-2 B. CIRCULANS與葡萄糖共培養之相關試驗 34
2-3-3-1 B. circulans藉由葡萄糖產生發酵反應 34
2-3-3-2 B. circulans與葡萄糖共培養後,發酵菌液進行MFC系統的產電量分析 35
2-3-3-3 Ferrozine assay 36
2-3-3-4 玫瑰黃素抑制B. circulans藉由葡萄糖發酵產生電子 36
2-3-4 體外試驗 37
2-3-4-1 B. circulans藉由葡萄糖發酵產生電子抑制C. acnes生長 37
2-3-5 體內試驗 38
2-3-5-1 玫瑰黃素抑制B. circulans藉由葡萄糖發酵產生電子,影響C. acnes生長 38
2-3-5-2 C. acnes解脂酶誘導促炎性細胞因子MIP-2表現 40
2-3-5-3 玫瑰黃素抑制B. circulans藉由葡萄糖發酵產生電子,影響C. acnes解脂酶誘導促炎性細胞因子MIP-2表現 40
四、結論 41
五、總結 43
參 考 文 獻 44
發 表 文 獻 48
附 件 一 49
參考文獻 [1] R. R. Roth and W. D. James, "Microbial ecology of the skin," Annual Reviews in Microbiology, vol. 42, pp. 441-464, 1988.
[2] J. A. S. Elizabeth A. Grice, "The skin microbiome," Nat Rev Microbiol, vol. 9, no. 4, pp. 244-53, Apr 2011.
[3] G. Ji et al., "Bacterial interference caused by autoinducing peptide variants," Science, vol. 276, no. 5321, pp. 2027-2030.
[4] M. Shu et al., "Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus," PLoS One, vol. 8, no. 2, p. e55380, 2013.
[5] C. M. Futsaether et al., "Intracellular pH changes induced in Propionibacterium acnes by UVA radiation and blue light," Journal of Photochemistry and Photobiology B: Biology vol. 31, pp. 125-131, 1995.
[6] K. KK and O. GF, "Analysis of research need and priorities in dermatology. III. Acne," J. Invest.Dennatol, vol. 75, pp. 454-42, 1979.
[7] J. Woolridge, "Galactomyces ferment filtrate reduces melanin synthesis and oxidative stress in normal human melanocytes," Journal of the American Academy of Dermatology, vol. 70, no. 5, 2014.
[8] H. Ando et al., "Possible involvement of proteolytic degradation of tyrosinase in the regulatory effect of fatty acids on melanogenesis," The Journal of Lipid Research, vol. 40, pp. 1312-1316, 1990.
[9] Z. D. Draelos, "Skin lightening preparations and the hydroquinone controversy," Dermatologic Therapy, vol. 20, pp. 308-313, 2007.
[10] D. F. L. M. Inês Ferreira dos Santos Videira, Sofia Magina,, "Mechanisms regulating melanogenesis," Anais Brasileiros de Dermatologia, vol. 88, no. 1, pp. 76-83, 2013.
[11] M. S. Kao et al., "Microbiome precision editing: Using PEG as a selective fermentation initiator against methicillin-resistant Staphylococcus aureus," Biotechnol J, vol. 12, no. 4, Apr 2017.
[12] L. Brooks et al., "Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety," Mol Metab, vol. 6, no. 1, pp. 48-60, Jan 2017.
[13] P. Pan et al., "Loss of FFAR2 promotes colon cancer by epigenetic dysregulation of inflammation suppressors," Int J Cancer, vol. 143, no. 4, pp. 886-896, Aug 15 2018.
[14] Z. Ang et al., "FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing," FASEB J, vol. 32, no. 1, pp. 289-303, Jan 2018.
[15] E. Seto and M. Yoshida, "Erasers of histone acetylation: the histone deacetylase enzymes," Cold Spring Harb Perspect Biol, vol. 6, no. 4, p. a018713, Apr 1 2014.
[16] I. L. Lai et al., "Histone deacetylase 10 relieves repression on the melanogenic program by maintaining the deacetylation status of repressors," J Biol Chem, vol. 285, no. 10, pp. 7187-96, Mar 5 2010.
[17] Praveen B. Kajjari et al., "Novel Blend Microspheres of Poly(3-hydroxybutyrate) and Pluronic F68/127 for Controlled Release of 6-Mercaptopurine.," J. APPL. POLYM. SCI., vol. 131, no. 9, 2014.
[18] C. M. Futsaether et al., "Intracellular pH changes induced in Propionibacterium acnes by UVA radiation and blue light," Journal of Photochemistry and Photobiology B: Biology, vol. 31, pp. 125-131, 1995.
[19] M. J. Bridgett and M. Davies, "Control of staphylococcal adhesion to polystyrene surfaces by polymer surface modification with surfactants," Biomaterials, vol. 13, no. 7, pp. 411-416, 1992.
[20] K. Tanaka et al., "Prevention of the ultraviolet B-mediated skin photoaging by a nuclear factor kappaB inhibitor, parthenolide," J Pharmacol Exp Ther, vol. 315, no. 2, pp. 624-30, Nov 2005.
[21] H. H. Ko et al., "Eupafolin, a skin whitening flavonoid isolated from Phyla nodiflora, downregulated melanogenesis: Role of MAPK and Akt pathways," J Ethnopharmacol, vol. 151, no. 1, pp. 386-93, 2014.
[22] S. N. B. VijayKumar Patra, Peter Wolf, "The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?," Front Microbiol, vol. 7, p. 1235, 2016.
[23] Y. Wang et al., "The response of human skin commensal bacteria as a reflection of UV radiation: UV-B decreases porphyrin production," PLoS One, vol. 7, no. 10, p. e47798, 2012.
[24] Y.-H. Hong et al., "Acetate and Propionate Short Chain Fatty Acids Stimulate Adipogenesis via GPCR43," Endocrinology, vol. 146, no. 12, pp. 5092-5099, 2005.
[25] K. Jimbow and T. Uesugi, "New melanogenesis and photobiological processes in activation and proliferation of precursor melanocytes after UV-exposure: ultrastructural differentiation of precursor melanocytes from Langerhans cells," J Invest Dermatol, vol. 78, no. 2, pp. 108-15, Feb 1982.
[26] R. Kittles, "Nature, Origin, and variation of human pigmentation," Journal of black studie, 1995.
[27] O. E. A. Peter B. Olaitan, Iyabo O.Ola., "Honey a reservoir for microorganisms and an inhibitory agent for microbes," frican Health Sciences, vol. 7, no. 3, pp. 159-165, 2007.
[28] S. H. Light et al., "A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria," Nature, vol. 562, no. 7725, pp. 140-144, Oct 2018.
[29] W. G. Sackett, "Honey as a carrier of intestinal diseases," Bull. CExp. Stad, vol. 252, pp. 1-18, 1919.
[30] F. J. Reynaldi, De Giusti, Marisa Raquel y Alippi, Adriana M., "Inhibition of the growth os Ascophaera apis by selected strains of Bacillus and Paenibacillus species isolated from honey.," Revista Argentina De Microbiologaa, vol. 36, pp. 52-55, 2004.
[31] G. P. Yoganathan K, "Electrogenicity assessment of Bacillus subtilis and Bacillus megaterium using Microbial Fuel Cell technology," International Journal of Applied Research, vol. 1, no. 13, pp. 435-438, 2015.
[32] J. Niessen et al., "Exploiting complex carbohydrates for microbial electricity generation ? a bacterial fuel cell operating on starch," Electrochemistry Communications, vol. 6, no. 9, pp. 955-958, 2004.
[33] T. Tian et al., "Flavin-mediated extracellular electron transfer in Gram-positive bacteria Bacillus cereus DIF1 and Rhodococcus ruber DIF2," RSC Advances, vol. 9, no. 70, pp. 40903-40909, 2019.
[34] L. X. You et al., "Flavins mediate extracellular electron transfer in Gram-positive Bacillus megaterium strain LLD-1," Bioelectrochemistry, vol. 119, pp. 196-202, Feb 2018.
[35] Y. L. Lixiang Chen, Xiaochun Tian, Feng Zhao, "Electron Transfer in Gram-Positive Electroactive Bacteria and Its Application.," Progress in Chemistry, vol. 32, no. 10, pp. 1557-1563, 2020.
[36] X. Liu et al., "Biological synthesis of high-conductive pili in aerobic bacterium Pseudomonas aeruginosa," Appl Microbiol Biotechnol, vol. 103, no. 3, pp. 1535-1544, Feb 2019.
[37] D. B. B. Enrico Marsili, Indraneel D. Shikhare, Dan Coursolle, Jeffrey A. Gralnick, and Daniel R. Bond, "Shewanella secretes flavins that mediate extracellular electron transfer," PNAS, vol. 105, no. 10, pp. 3968-3973, 2008.
[38] O. Choi et al., "Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor," Biotechnol Bioeng, vol. 109, no. 10, pp. 2494-502, Oct 2012.
[39] B. Cao et al., "Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: characterization by infrared spectroscopy and proteomics," Environ Microbiol, vol. 13, no. 4, pp. 1018-31, Apr 2011.
[40] R. L. F. A.Palfey, "Flavin-Dependent Enzymes," in Comprehensive Natural Products II, vol. 7, 2010, pp. 37-113.
[41] L. C. F. Scott Mathews, and Rosemary C. E. Durley, "Flavin Electron Transfer Proteins," in Subcellular Biochemistry, vol. 35, 2020, pp. 29-72.
[42] W. F. Bleam, "Redox Chemistry," in Soil and Environmental Chemistry, 2012, pp. 321-370.
[43] L. J.-s. Jia Dong-fang, Diao Yong, "Novel targets for antibiotics discovery: riboswitches," Acta Pharmaceutica Sinica, vol. 48, no. 9, pp. 1361-1368, 2013.
[44] C. Y. Sheng Shu-yue, Zhang Xing-mei, Shi Yu-sheng, "Research Progresses on Riboswitches and Their Applications in Antimicrobials," Biotechnology Bulletin, vol. 33, no. 1, pp. 114-119, 2017.
[45] K. F. B. Elaine R. Lee, Ronald R. Breaker, "<Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression.pdf>," RNA Biol, vol. 6, no. 2, pp. 187–194, 2009.
[46] F. Pillet et al., "Cell wall as a target for bacteria inactivation by pulsed electric fields," Sci Rep, vol. 6, p. 19778, Feb 1 2016.
[47] L. V. Barentt Rosenberg, James E. Trosko, Virginia H. Mansour "Platinum compounds: a new class of potent antitumour agents," Nature, vol. 222, pp. 385-386, 1969.
[48] M. Giladi et al., "Microbial growth inhibition by alternating electric fields," Antimicrob Agents Chemother, vol. 52, no. 10, pp. 3517-22, Oct 2008.
[49] S. Fitz-Gibbon et al., "Propionibacterium acnes strain populations in the human skin microbiome associated with acne," J Invest Dermatol, vol. 133, no. 9, pp. 2152-60, Sep 2013.
[50] I. Kurokawa et al., "New developments in our understanding of acne pathogenesis and treatment," Exp Dermatol, vol. 18, no. 10, pp. 821-32, Oct 2009.
[51] E. Contassot and L. E. French, "New insights into acne pathogenesis: propionibacterium acnes activates the inflammasome," J Invest Dermatol, vol. 134, no. 2, pp. 310-313, Feb 2014.
[52] Y. Wang et al., "The Anti-Inflammatory Activities of Propionibacterium acnes CAMP Factor-Targeted Acne Vaccines," J Invest Dermatol, vol. 138, no. 11, pp. 2355-2364, Nov 2018.
[53] T. Nakatsuji et al., "Bioengineering a humanized acne microenvironment model: proteomics analysis of host responses to Propionibacterium acnes infection in vivo," Proteomics, vol. 8, no. 16, pp. 3406-15, Aug 2008.
[54] S. Higaki, "Lipase inhibitors for the treatment of acne," Journal of Molecular Catalysis B: Enzymatic, vol. 22, no. 5-6, pp. 377-384, 2003.
[55] Y. Wang et al., "A Precision Microbiome Approach Using Sucrose for Selective Augmentation of Staphylococcus epidermidis Fermentation against Propionibacterium acnes," Int J Mol Sci, vol. 17, no. 11, Nov 9 2016.
[56] J. Shaikh et al., "Simultaneous Decolorization of Methyl Red and Generation of Electricity in Microbial Fuel Cell by Bacillus circulans NPP1," Journal of Microbial & Biochemical Technology, vol. 08, no. 05, 2016.
[57] S. K. Chaudhuri and D. R. Lovley, "Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells," Nat Biotechnol, vol. 21, no. 10, pp. 1229-32, Oct 2003.
[58] V. Vandieken et al., "Hydrogen, acetate, and lactate as electron donors for microbial manganese reduction in a manganese-rich coastal marine sediment," FEMS Microbiol Ecol, vol. 87, no. 3, pp. 733-45, Mar 2014.
[59] S. B. Velasquez-Orta et al., "Evaluation of hydrolysis and fermentation rates in microbial fuel cells," Appl Microbiol Biotechnol, vol. 90, no. 2, pp. 789-98, Apr 2011.
[60] A. Balasubramaniam et al., "Skin Bacteria Mediate Glycerol Fermentation to Produce Electricity and Resist UV-B," Microorganisms, vol. 8, no. 7, Jul 21 2020.
[61] S. Marito et al., "Electricity-producing Staphylococcus epidermidis counteracts Cutibacterium acnes," Sci Rep, vol. 11, no. 1, p. 12001, Jun 7 2021.
[62] A. M. O′Neill and R. L. Gallo, "Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris," Microbiome, vol. 6, no. 1, p. 177, Oct 2 2018.
指導教授 陳純娟 審核日期 2022-9-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明