參考文獻 |
[1] Saxena A, Ng EYK, Lim ST. Imaging modalities to diagnose carotid artery stenosis: progress and prospect. Biomed Eng Online. 2019 May 28;18(1):66. doi: 10.1186/s12938-019-0685-7. PMID: 31138235; PMCID: PMC6537161.
[2] Xu, G., Ma, M., Liu, X. & Hankey, G. J. Is there a stroke belt in China and
why? Stroke 44, 1775–1783 (2013).
[3] Markus HS, van der Worp HB, Rothwell PM. Posterior circulation ischaemic stroke and transient ischaemic attack: diagnosis, investigation, and secondary prevention. Lancet Neurol. 2013;12(10):989-998. doi:10.1016/S1474-4422(13)70211-4.
[4] Stayman AN, Nogueira RG, Gupta R. A systematic review of stenting and angioplasty of symptomatic extracranial vertebral artery stenosis. Stroke. 2011;42(8):2212-2216. doi:10.1161/STROKEAHA.110.611459
[5] Compter A, van der Worp HB, Schonewille WJ, et al. Stenting versus medical treatment in patients with symptomatic vertebral artery stenosis: a randomised open-label phase 2 trial. Lancet Neurol. 2015;14(6):606-614. doi:10.1016/S1474-4422(15)00017-4
[6] Markus HS, Larsson SC, Kuker W, et al. Stenting for symptomatic vertebral artery stenosis: The Vertebral Artery Ischaemia Stenting Trial. Neurology. 2017;89(12):1229- 1236. doi:10.1212/WNL.0000000000004385.
[7] Hilkewich, M. W. Written observations as a part of computed tomography
angiography post processing by medical radiation technologists: a pilot
project. J. Med Imaging Radiat. Sci. 45, 31–36 (2014).
[8] Wen-Hsiang Cheng, Hui-Yang Huang. Using Deep Learning to Generate Bone Subtraction CT Angiography for Improving Vertebral Artery Segmentation
[9] McBee, M. P. et al. Deep learning in radiology. Acad. Radio. 25, 1472–1480
(2018).
[10] Byrne, N.; Velasco Forte, M.; Tandon, A.; Valverde, I.; Hussain, T. A Systematic Review of Image Segmentation Methodology, Used in the Additive Manufacture of Patient-Specific 3D Printed Models of the Cardiovascular System. JRSM Cardiovasc. Dis. 2016, 5, 2048004016645467.
[11] M. David Jenkins, T. A. Carr, M. I. Iglesias, T. Buggy and G. Morison, "A Deep Convolutional Neural Network for Semantic Pixel-Wise Segmentation of Road and Pavement Surface Cracks," 2018 26th European Signal Processing Conference (EUSIPCO), 2018, pp. 2120-2124, doi: 10.23919/EUSIPCO.2018.8553280.
[12] Huang C, Davis L, Townshend J (2002) An assessment of support vector machines for land cover classification. Int J Remote Sens 23(4):725–749
[13] Moon N, Bullitt E, Van Leemput K, Gerig G (2002) Automatic brain and tumor segmentation. Med Image Comput Comput Assist Interv MICCAI 2002:372–379
[14] Qiu B, Guo J, Kraeima J, Glas HH, Borra RJH, Witjes MJH, van Ooijen PMA. Automatic segmentation of the mandible from computed tomography scans for 3D virtual surgical planning using the convolutional neural network. Phys Med Biol. 2019 Sep 5;64(17):175020. doi: 10.1088/1361-6560/ab2c95. PMID: 31239411.
[15] Fritsch J, Kuehnl T, Geiger A (2013) A new performance measure and evaluation benchmark for road detection algorithms. In: International conference on intelligent transportation systems (ITSC)
[16] Menze M, Geiger A (2015) Object scene flow for autonomous vehicles. In: Proceedings of the conference on computer vision and pattern recognition (CVPR
[17] Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B (2016) The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3213–3223
[18] Nicolas Vandenbroucke, Ludovic Macaire, Jack-Gérard Postaire, Color image segmentation by pixel classification in an adapted hybrid color space. Application to soccer image analysis, Computer Vision and Image Understanding, Volume 90, Issue 2, 2003, Pages 190-216, ISSN 1077-3142, https://doi.org/10.1016/S1077-3142(03)00025-0.
[19] Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110
[20] Zheng L, Li G, Bao Y (2010) Improvement of grayscale image 2D maximum entropy threshold segmentation method. In: 2010 international conference on logistics systems and intelligent management, vol 1. IEEE, pp 324–328
[21] S. Na, L. Xumin and G. Yong, "Research on k-means Clustering Algorithm: An Improved k-means Clustering Algorithm," 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, 2010, pp. 63-67, doi: 10.1109/IITSI.2010.74
[22] Long J, Shelhamer E, Darrell T (2014) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 79(10):1337–1342
[23] Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2016b) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv preprint arXiv:1606.00915
[24] Olaf Ronneberger, Philipp Fischer, Thomas Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv:1505.04597
[25] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff,
Hartwig Adam. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. arXiv:1802.02611v3
[26] Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick. Mask R-CNN.
arXiv:1703.06870v3
[27] Lee MJ, Kim S, Lee SA, et al. Overcoming artifacts from me-tallic orthopedic implants at high-field-strength MR imaging and multidetector CT. RadioGraphics 2007;27(3):791–803.
[28] Barmeir E, Dubowitz B, Roffman M. Computed tomogra-phy in the assessment and planning of complicated total hip replacement. Acta Orthop Scand 1982;53(4):597–604.
[29] Kalender WA, Hebel R, Ebersberger J. Reduction of CT artifacts caused by metallic implants. Radiology 1987;164(2):576–577
[30] Wellenberg RHH, Hakvoort ET, Slump CH, Boomsma MF, Maas M, Streekstra GJ. Metal artifact reduction techniques in musculoskeletal CT-imaging. Eur J Radiol. 2018 Oct;107:60-69. doi: 10.1016/j.ejrad.2018.08.010. Epub 2018 Aug 12. PMID: 30292274.
[31] Kunio Doi, Computer-aided diagnosis in medical imaging: Historical review, current status and future potential, Computerized Medical Imaging and Graphics, Volume 31, Issues 4–5, 2007, Pages 198-211, ISSN 0895-6111,
[32] de Dombal F T, Leaper D J, Staniland J R, McCann A P, Horrocks J C. Computer-aided Diagnosis of Acute Abdominal Pain Br Med J 1972; 2 :9 doi:10.1136/bmj.2.5804.9
[33] Kunio Doi, Heber MacMahon, Shigehiko Katsuragawa, Robert M Nishikawa, Yulei Jiang, Computer-aided diagnosis in radiology: potential and pitfalls, European Journal of Radiology, Volume 31, Issue 2, 1999, Pages 97-109, ISSN 0720-048X,
[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ImageNet
classification with deep convolutional neural networks. Commun. ACM 60, 6 (June
2017), 84–90. DOI:https://doi.org/10.1145/3065386
[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.Deep Residual Learning for Image Recognition. arXiv:1512.03385
[36] O. Ronneberger, P. Fischer, T. Brox. U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer (2015), pp. 234-241, 10.1007/978-3-319-24574-4_28
[37] Zhu, W.; Huang, Y.; Tang, H.; Qian, Z.; Du, N.; Fan, W.; Xie, X. AnatomyNet: Deep 3D Squeeze-and-excitation U-Nets for fast and fully automated whole-volume anatomical segmentation. arXiv 2018, arXiv:1808.05238.
[38] Qiu B, Guo J, Kraeima J, Glas HH, Borra RJH, Witjes MJH, van Ooijen PMA. Automatic segmentation of the mandible from computed tomography scans for 3D virtual surgical planning using the convolutional neural network. Phys Med Biol. 2019 Sep 5;64(17):175020. doi: 10.1088/1361-6560/ab2c95. PMID: 31239411.
[39] Sekuboyina, A., Kukačka, J., Kirschke, J.S., Menze, B.H., Valentinitsch, A. (2018). Attention-Driven Deep Learning for Pathological Spine Segmentation. In: Glocker, B., Yao, J., Vrtovec, T., Frangi, A., Zheng, G. (eds) Computational Methods and Clinical Applications in Musculoskeletal Imaging. MSKI 2017. Lecture Notes in Computer Science(), vol 10734. Springer, Cham. https://doi.org/10.1007/978-3-319-74113-0_10
[40] Kadoury, S., Labelle, H., Paragios, N.: Spine segmentation in medical images using manifold embeddings and higher-order MRFs. IEEE Trans. Med. Imaging 32(7), 1227–1238 (2013)
[41] Lootus, M., Kadir, T., Zisserman, A.: Automated radiological grading of spinal MRI. In: Yao, J., et al. (eds.) CSI 2014. LNCVB, vol. 20, pp. 119–130. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14148-0_11
[42] Glocker, B., Feulner, J., Criminisi, A., Haynor, D., Konukoglu, E.: Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In: Ayache, N., et al. (eds.) Proceedings of 15th International Conference on Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012. LNCS, vol. 7512, pp. 590–598. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_73
[43] Chen, H., Shen, C., Qin, J., Ni, D., Shi, L., Cheng, J.C.Y., Heng, P.-A.: Automatic localization and identification of vertebrae in Spine CT via a joint learning model with deep neural networks. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 515–522. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_63
[44] Adam: A Method for Stochastic Optimization. Diederik P. Kingma, Jimmy Ba. Published as a conference paper at the 3rd International Conference for Learning Representations, San Diego, 2015. arXiv:1412.6980 [cs.LG]
[45] On the importance of initialization and momentum in deep learning. Ilya Sutskever, James Martens, George Dahl, Geoffrey Hinton. Proceedings of the 30th International Conference on Machine Learning, PMLR 28(3):1139-1147, 2013.
[46] Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. John Duchi, Elad Hazan, Yoram Singer. Journal of Machine Learning Research 12 (2011) 2121-2159
[47] On Loss Functions for Deep Neural Networks in Classification. Katarzyna Janocha, Wojciech Marian Czarnecki. arXiv:1702.05659 [cs.LG]
[48] Massimo Salvi, U. Rajendra Acharya, Filippo Molinari, Kristen M. Meiburger, The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis, Computers in Biology and Medicine, Volume 128, 2021, 104129, ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2020.104129.
[49] Yu, F. & Koltun, V. (2015). Multi-scale context aggregation by dilated convolutions, arXiv preprint arXiv:1511.07122 .
[50] Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. (2017). Pyramid scene parsing network, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 2881–2890. |