參考文獻 |
1. 110 年國人死因統計分析結果. 2022063]; Available from: https://dep.mohw.gov.tw/dos/lp-5069-113-xCat-y110.html.
2. 2020 年估計年齡標準化發病率和死亡率(世界). 2021; Available from: https://reurl.cc/anbKVX.
3. Wawruszak, A., et al., Valproic acid and breast cancer: State of the art in 2021. Cancers, 2021. 13(14): p. 3409.
4. Dai, X., et al., Breast cancer intrinsic subtype classification, clinical use and future trends. American journal of cancer research, 2015. 5(10): p. 2929.
5. Vuong, D., et al., Molecular classification of breast cancer. Virchows Archiv, 2014. 465(1): p. 1-14.
6. Bonacho, T., F. Rodrigues, and J. Liberal, Immunohistochemistry for diagnosis and prognosis of breast cancer: a review. Biotechnic & Histochemistry, 2020. 95(2): p. 71-91.
7. Kavarthapu, R., R. Anbazhagan, and M.L. Dufau, Crosstalk between PRLR and EGFR/HER2 Signaling Pathways in Breast Cancer. Cancers, 2021. 13(18): p. 4685.
8. Aaliyari-Serej, Z., et al., Recent Advances in Targeting of Breast Cancer Stem Cells Based on Biological Concepts and Drug Delivery System Modification. Advanced Pharmaceutical Bulletin, 2020. 10(3): p. 338.
9. Liu, Z., X.-S. Zhang, and S. Zhang, Breast tumor subgroups reveal diverse clinical prognostic power. Scientific reports, 2014. 4(1): p. 1-9.
10. Kennecke, H., et al., Metastatic behavior of breast cancer subtypes. Journal of clinical oncology, 2010. 28(20): p. 3271-3277.
11. Guarneri, V. and P. Conte, Metastatic breast cancer: therapeutic options according to molecular subtypes and prior adjuvant therapy. The oncologist, 2009. 14(7): p. 645-656.
12. van Ramshorst, M.S., et al., Neoadjuvant chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for HER2-positive breast cancer (TRAIN-2): a multicentre, open-label, randomised, phase 3 trial. The Lancet Oncology, 2018. 19(12): p. 1630-1640.
13. Harbeck, N. and O. Gluz, Neoadjuvant therapy for triple negative and HER2-positive early breast cancer. The Breast, 2017. 34: p. S99-S103.
14. Wuerstlein, R. and N. Harbeck, Neoadjuvant therapy for HER2-positive breast cancer. Reviews on recent clinical trials, 2017. 12(2): p. 81-92.
15. Jitariu, A.-A., et al., Triple negative breast cancer: the kiss of death. Oncotarget, 2017. 8(28): p. 46652.
16. Chun, K.-H., J.H. Park, and S. Fan, Predicting and overcoming chemotherapeutic resistance in breast cancer. Translational Research in Breast Cancer, 2017: p. 59-104.
17. O′Reilly, D., M. Al Sendi, and C.M. Kelly, Overview of recent advances in metastatic triple negative breast cancer. World Journal of Clinical Oncology, 2021. 12(3): p. 164.
18. Gerdes, J., et al., Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. International journal of cancer, 1983. 31(1): p. 13-20.
19. Urruticoechea, A., I.E. Smith, and M. Dowsett, Proliferation marker Ki-67 in early breast cancer. Journal of clinical oncology, 2005. 23(28): p. 7212-7220.
20. Nishimura, R., et al., Ki-67 as a prognostic marker according to breast cancer subtype and a predictor of recurrence time in primary breast cancer. Experimental and therapeutic medicine, 2010. 1(5): p. 747-754.
21. Cheang, M.C., et al., Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. JNCI: Journal of the National Cancer Institute, 2009. 101(10): p. 736-750.
22. de Ruijter, T.C., et al., Characteristics of triple-negative breast cancer. Journal of cancer research and clinical oncology, 2011. 137(2): p. 183-192.
23. Foulkes, W.D., I.E. Smith, and J.S. Reis-Filho, Triple-negative breast cancer. New England journal of medicine, 2010. 363(20): p. 1938-1948.
24. Teichgraeber, D.C., M.S. Guirguis, and G.J. Whitman, Breast Cancer Staging: Updates in the AJCC Cancer Staging Manual, and Current Challenges for Radiologists, From the AJR Special Series on Cancer Staging. American Journal of Roentgenology, 2021. 217(2): p. 278-290.
25. Hortobagyi, G.N., S.B. Edge, and A. Giuliano, New and important changes in the TNM staging system for breast cancer. American society of clinical oncology educational book, 2018. 38: p. 457-467.
26. Cserni, G., et al., The new TNM-based staging of breast cancer. Virchows Archiv, 2018. 472(5): p. 697-703.
27. Kamińska, M., et al., Breast cancer risk factors. Menopause Review/Przegląd Menopauzalny, 2015. 14(3): p. 196-202.
28. Key, T.J., P.K. Verkasalo, and E. Banks, Epidemiology of breast cancer. The lancet oncology, 2001. 2(3): p. 133-140.
29. Rak, K.P., układ odpornościowy a odżywianie. Poradnik dla pacjentów. MedPharm, Wrocław, 2009.
30. Bagnardi, V., et al., Light alcohol drinking and cancer: a meta-analysis. Annals of oncology, 2013. 24(2): p. 301-308.
31. Bauer, S.R., et al., Plasma vitamin D levels, menopause, and risk of breast cancer: dose-response meta-analysis of prospective studies. Medicine, 2013. 92(3): p. 123.
32. Yang, X.R., et al., Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. Journal of the National Cancer Institute, 2011. 103(3): p. 250-263.
33. Clendenen, T.V., et al., Breast cancer risk prediction in women aged 35–50 years: impact of including sex hormone concentrations in the Gail model. Breast Cancer Research, 2019. 21(1): p. 1-12.
34. Brewer, H.R., et al., Family history and risk of breast cancer: an analysis accounting for family structure. Breast cancer research and treatment, 2017. 165(1): p. 193-200.
35. Sun, Y.-S., et al., Risk factors and preventions of breast cancer. International journal of biological sciences, 2017. 13(11): p. 1387.
36. Momenimovahed, Z. and H. Salehiniya, Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer: Targets and Therapy, 2019. 11: p. 151.
37. Waks, A.G. and E.P. Winer, Breast cancer treatment: a review. Jama, 2019. 321(3): p. 288-300.
38. Sledge, G.W., et al., Past, present, and future challenges in breast cancer treatment. Journal of clinical oncology, 2014. 32(19): p. 1979.
39. Den Hollander, P., M.I. Savage, and P.H. Brown, Targeted therapy for breast cancer prevention. Frontiers in oncology, 2013. 3: p. 250.
40. Sternschuss, M., et al., Efficacy and safety of neoadjuvant immune checkpoint inhibitors in early-stage triple-negative breast cancer: a systematic review and meta-analysis. Journal of Cancer Research and Clinical Oncology, 2021. 147(11): p. 3369-3379.
41. Henriques, B., F. Mendes, and D. Martins, Immunotherapy in breast cancer: when, how, and what challenges? Biomedicines, 2021. 9(11): p. 1687.
42. Hak, A., V.R. Shinde, and A.K. Rengan, A review of advanced nanoformulations in phototherapy for cancer therapeutics. Photodiagnosis and Photodynamic Therapy, 2021. 33: p. 102205.
43. 詹宗晃.劉敏醫師. 財團法人台灣癌症基金會. Available from: https://www.canceraway.org.tw/page.php?IDno=532.
44. Elmore, J.G., et al., Screening for breast cancer. Jama, 2005. 293(10): p. 1245-1256.
45. Cyran, C.C., et al., Permeability to macromolecular contrast media quantified by dynamic MRI correlates with tumor tissue assays of vascular endothelial growth factor (VEGF). European Journal of Radiology, 2012. 81(5): p. 891-896.
46. Lee, C., et al., Chlorella-gold nanorods hydrogels generating photosynthesis-derived oxygen and mild heat for the treatment of hypoxic breast cancer. Journal of Controlled Release, 2019. 294: p. 77-90.
47. Yang, S., et al., Paying attention to tumor blood vessels: Cancer phototherapy assisted with nano delivery strategies. Biomaterials, 2021. 268: p. 120562.
48. Chen, L., et al., Tumor‐targeted drug and CpG delivery system for phototherapy and docetaxel‐enhanced immunotherapy with polarization toward M1‐type macrophages on triple negative breast cancers. Advanced Materials, 2019. 31(52): p. 1904997.
49. Lee, Y.-H. and D.-S. Chang, Fabrication, characterization, and biological evaluation of anti-HER2 indocyanine green-doxorubicin-encapsulated PEG-b-PLGA copolymeric nanoparticles for targeted photochemotherapy of breast cancer cells. Scientific reports, 2017. 7(1): p. 1-13.
50. Liao, Y.-T., et al., Biocompatible and multifunctional gold nanorods for effective photothermal therapy of oral squamous cell carcinoma. Journal of Materials Chemistry B, 2019. 7(28): p. 4451-4460.
51. Tang, J., et al., Enhanced anti-tumor efficacy of temozolomide-loaded carboxylated poly (amido-amine) combined with photothermal/photodynamic therapy for melanoma treatment. Cancer Letters, 2018. 423: p. 16-26.
52. Lee, Y.-H. and Y.-C. Lin, Anti-EGFR indocyanine green-mitomycin C-loaded perfluorocarbon double nanoemulsion: A novel nanostructure for targeted photochemotherapy of bladder cancer cells. Nanomaterials, 2018. 8(5): p. 283.
53. Wan, Z., et al., NIR light-assisted phototherapies for bone-related diseases and bone tissue regeneration: A systematic review. Theranostics, 2020. 10(25): p. 11837.
54. Olejniczak, J., C.-J. Carling, and A. Almutairi, Photocontrolled release using one-photon absorption of visible or NIR light. Journal of Controlled Release, 2015. 219: p. 18-30.
55. Silva, J.M., E. Silva, and R.L. Reis, Light-triggered release of photocaged therapeutics-Where are we now? Journal of Controlled Release, 2019. 298: p. 154-176.
56. Yang, G., et al., Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. Coordination Chemistry Reviews, 2016. 320: p. 100-117.
57. Juzenas, P., et al., Noninvasive fluorescence excitation spectroscopy during application of 5-aminolevulinic acid in vivo. Photochemical & Photobiological Sciences, 2002. 1(10): p. 745-748.
58. Zhao, W., et al., Remote light‐responsive nanocarriers for controlled drug delivery: Advances and perspectives. Small, 2019. 15(45): p. 1903060.
59. Saneja, A., et al., Recent advances in near-infrared light-responsive nanocarriers for cancer therapy. Drug Discovery Today, 2018. 23(5): p. 1115-1125.
60. Noble, G.T., et al., Ligand-targeted liposome design: challenges and fundamental considerations. Trends in biotechnology, 2014. 32(1): p. 32-45.
61. Wang, C., et al., Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials, 2011. 32(26): p. 6145-6154.
62. Raza, A., et al., “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review. Journal of Materials Research and Technology, 2019. 8(1): p. 1497-1509.
63. Yan, C., Y. Zhang, and Z. Guo, Recent progress on molecularly near-infrared fluorescent probes for chemotherapy and phototherapy. Coordination Chemistry Reviews, 2021. 427: p. 213556.
64. Fan, W., P. Huang, and X. Chen, Overcoming the Achilles′ heel of photodynamic therapy. Chemical Society Reviews, 2016. 45(23): p. 6488-6519.
65. Yang, X., et al., Near-infrared light-activated IR780-loaded liposomes for anti-tumor angiogenesis and Photothermal therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 2018. 14(7): p. 2283-2294.
66. Liu, Y., et al., Dopamine‐melanin colloidal nanospheres: an efficient near‐infrared photothermal therapeutic agent for in vivo cancer therapy. Advanced materials, 2013. 25(9): p. 1353-1359.
67. Zou, Y., et al., A single molecule drug targeting photosensitizer for enhanced breast cancer photothermal therapy. Small, 2020. 16(18): p. 1907677.
68. Cheng, L., et al., Activation of prodrugs by NIR‐triggered release of exogenous enzymes for locoregional chemo‐photothermal therapy. Angewandte Chemie International Edition, 2019. 58(23): p. 7728-7732.
69. Younis, M.R., et al., Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nanoagents. ACs Nano, 2019. 13(2): p. 2544-2557.
70. Han, H.S. and K.Y. Choi, Advances in nanomaterial-mediated photothermal cancer therapies: toward clinical applications. Biomedicines, 2021. 9(3): p. 305.
71. Zhang, Y., et al., Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Scientific reports, 2018. 8(1): p. 1-9.
72. Ali, M.R., et al., Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis. International journal of nanomedicine, 2016. 11: p. 4849.
73. Mroz, P., et al., Stimulation of anti-tumor immunity by photodynamic therapy. Expert review of clinical immunology, 2011. 7(1): p. 75-91.
74. Xu, X., H. Lu, and R. Lee, Near infrared light triggered photo/immuno-therapy toward cancers. Frontiers in bioengineering and biotechnology, 2020. 8: p. 488.
75. Gunaydin, G., M.E. Gedik, and S. Ayan, Photodynamic therapy—current limitations and novel approaches. Frontiers in Chemistry, 2021. 9: p. 691697.
76. Lim, M.E., et al., Photodynamic inactivation of viruses using upconversion nanoparticles. Biomaterials, 2012. 33(6): p. 1912-1920.
77. Kharkwal, G.B., et al., Photodynamic therapy for infections: clinical applications. Lasers in surgery and medicine, 2011. 43(7): p. 755-767.
78. Macdonald, I.J. and T.J. Dougherty, Basic principles of photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2001. 5(02): p. 105-129.
79. Shi, H. and P.J. Sadler, How promising is phototherapy for cancer? British journal of cancer, 2020. 123(6): p. 871-873.
80. Calixto, G.M.F., et al., Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules, 2016. 21(3): p. 342.
81. Benslima, A., et al., The brown seaweed Cystoseira schiffneri as a source of sodium alginate: Chemical and structural characterization, and antioxidant activities. Food Bioscience, 2021. 40: p. 100873.
82. Pan, H., et al., In situ fabrication of intelligent photothermal indocyanine green–alginate hydrogel for localized tumor ablation. ACS applied materials & interfaces, 2018. 11(3): p. 2782-2789.
83. Zeng, Y., et al., Injectable microcryogels reinforced alginate encapsulation of mesenchymal stromal cells for leak-proof delivery and alleviation of canine disc degeneration. Biomaterials, 2015. 59: p. 53-65.
84. Jadach, B., W. Świetlik, and A. Froelich, Sodium alginate as a pharmaceutical excipient: novel applications of a well-known polymer. Journal of Pharmaceutical Sciences, 2022.
85. Shaikh, M.A.J., et al., Sodium alginate based drug delivery in management of breast cancer. Carbohydrate Polymers, 2022: p. 119689.
86. Pawar, S.N. and K.J. Edgar, Alginate derivatization: A review of chemistry, properties and applications. Biomaterials, 2012. 33(11): p. 3279-3305.
87. Thomas, C.J., N.J. Rahier, and S.M. Hecht, Camptothecin: current perspectives. Bioorganic & medicinal chemistry, 2004. 12(7): p. 1585-1604.
88. Tyner, K.M., S.R. Schiffman, and E.P. Giannelis, Nanobiohybrids as delivery vehicles for camptothecin. Journal of Controlled Release, 2004. 95(3): p. 501-514.
89. Pizzolato, J.F. and L.B. Saltz, The camptothecins. The Lancet, 2003. 361(9376): p. 2235-2242.
90. Pommier, Y., Topoisomerase I inhibitors: camptothecins and beyond. Nature Reviews Cancer, 2006. 6(10): p. 789-802.
91. Martino, E., et al., The long story of camptothecin: From traditional medicine to drugs. Bioorganic & medicinal chemistry letters, 2017. 27(4): p. 701-707.
92. Divya, K. and M. Jisha, Chitosan nanoparticles preparation and applications. Environmental chemistry letters, 2018. 16(1): p. 101-112.
93. Bugnicourt, L. and C. Ladavière, Interests of chitosan nanoparticles ionically cross-linked with tripolyphosphate for biomedical applications. Progress in polymer science, 2016. 60: p. 1-17.
94. Gierszewska, M. and J. Ostrowska-Czubenko, Equilibrium swelling study of crosslinked chitosan membranes in water, buffer and salt solutions. Progress on Chemistry and Application of Chitin and its Derivatives, 2016. 21: p. 55-62.
95. Zhao, H., et al., Tailoring Aggregation Extent of Photosensitizers to Boost Phototherapy Potency for Eliciting Systemic Antitumor Immunity. Advanced Materials, 2022. 34(8): p. 2106390.
96. Kumari, A. and S. Gupta, Two‐photon excitation and direct emission from S2 state of US Food and Drug Administration approved near‐infrared dye: Application of anti‐Kasha′s rule for two‐photon fluorescence imaging. Journal of Biophotonics, 2019. 12(1): p. e201800086.
97. Porcu, E.P., et al., Indocyanine green delivery systems for tumour detection and treatments. Biotechnology Advances, 2016. 34(5): p. 768-789.
98. Tovar, J.S.D., et al. Photodegradation in the infrared region of indocyanine green in aqueous solution. in 2019 SBFoton International Optics and Photonics Conference (SBFoton IOPC). 2019. IEEE.
99. Topaloglu, N., M. Gulsoy, and S. Yuksel, Antimicrobial photodynamic therapy of resistant bacterial strains by indocyanine green and 809-nm diode laser. Photomedicine and laser surgery, 2013. 31(4): p. 155-162.
100. Miller, M.A. and E.M. Sletten, Perfluorocarbons in Chemical Biology. ChemBioChem, 2020. 21(24): p. 3451-3462.
101. Krafft, M.P. and J.G. Riess, Perfluorocarbons: Life sciences and biomedical uses Dedicated to the memory of Professor Guy Ourisson, a true RENAISSANCE man. Journal of Polymer Science Part A: Polymer Chemistry, 2007. 45(7): p. 1185-1198.
102. Song, X., et al., Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano letters, 2016. 16(10): p. 6145-6153.
103. Jacoby, C., et al., Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half‐lives and sensitivity. NMR in Biomedicine, 2014. 27(3): p. 261-271.
104. Vlachou, M., et al., Probing the release of the chronobiotic hormone melatonin from hybrid calcium alginate hydrogel beads. Acta Pharmaceutica, 2020. 70(4): p. 527-538.
105. Bae, K.H., et al., Pluronic/chitosan shell cross-linked nanocapsules encapsulating magnetic nanoparticles. Journal of Biomaterials Science, Polymer Edition, 2008. 19(12): p. 1571-1583.
106. Estelrich, J. and M.A. Busquets, Iron oxide nanoparticles in photothermal therapy. Molecules, 2018. 23(7): p. 1567. |