博碩士論文 109827017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:3.129.194.182
姓名 林芝庭(Chih-Ting Lin)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 開發包覆靛氰綠全氟碳奈米乳劑和喜樹鹼奈米顆粒之藻酸鹽複合水凝膠用於乳腺癌光/化學治療之研究
(Development of Alginate Composite Hydrogel Containing Indocyanine Green-Loaded Perfluorinated Nanoemulsions and Camptothecin-Encapsulated Nanoparticles for Photochemotherapy of Breast Cancer)
相關論文
★ 研究探討層流剪應力於高糖環境下對膀胱癌細胞遷移與侵襲行為之影響★ 研究探討層流剪應力對泌尿上皮細胞癌於細胞週期運作之影響與機轉
★ 設計並建構一全氟碳光生物反應器組用於分離混合氣體中之二氧化碳並同時提升微藻養殖及其經濟產物生成之效能★ Synthesis, Spectral Characterization and Evaluation of Quercetin-Zinc Complex for Tumoricidal and Anti-metastasis of Human Bladder Cancer Cell
★ 包覆靛氰綠與喜樹鹼之標靶全氟碳奈米乳劑 研製於強化乳癌螢光擴散光學影像暨 光/化學治療之研究★ 研製包覆靛氰綠與絲裂黴素C之標靶全氟碳奈米乳劑應用於膀胱癌光-化學治療之研究
★ 研製包覆靛氰綠及利福平之聚乳酸-聚甘醇酸奈米粒子用於破壞生物膜之抗菌治療★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)
★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane★ 開發可生物降解的完全磷酸膽鹼水凝膠
★ Development of Functional Biointerface by Mixed Oligomeric Silatranes★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds
★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry★ Disulfide-based cross-linkers for functional polymeric networks
★ 建立雙離子高分子修飾蛋白質技術與分析★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-1以後開放)
摘要(中) 乳腺癌為我國婦女發生率第一名的癌症,發生高峰約在45-69歲之間,也是全球女性癌症死亡的主要原因。在各類乳癌中,三陰性乳癌抗藥性高,治療過程中具有高復發、高死亡率等問題,而在臨床上容易早期轉移,且治療的選擇較少,目前藥物治療仍以化學治療為主。近年來,水凝膠已廣泛運用於藥物輸送,與全身化療相比,水凝膠藥物載體的副作用更小,且可以在腫瘤部位緩慢釋放藥物,因此我們開發了一種由二價陽離子(Ca2+)和海藻酸鈉製備的可注射型水凝膠。這種水凝膠含有喜樹鹼(CPT)奈米粒子和靛氰綠(ICG)全氟化碳奈米乳劑(Hydrogel contains camptothecin nanoparticles and indocyanine green perfluorocarbon nanoemulsions; HGCNIPNs),可在光照下同時提供光療及化療。根據DLS分析結果,CPTNPs和ICGNPs的尺寸分別為483.23±113.0 nm和219.76±13.11 nm,電位分別為28.51 ± 3.35 mV和-33.27 ± 4.90 mV,包覆率均高於92%。與ICG水溶液相比,水凝膠中的ICG增強熱穩定性並提供相當的熱療效果,且在近紅外光(NIR;808 nm,6 W/cm2)照射下產生的單線態氧明顯增加。此外,在體外細胞實驗中顯示HGCNIPNs(ICG=160 μM;CPT=300 μM)與相同濃度Free CPT及CPTNPs更具細胞毒性,有顯著差異,存活率分別為23.57%、75.80%及68.12%。而在動物體內試驗中結果表明HGCNIPNs在ICG為160 μM及CPT為300 μM下是有腫瘤抑制效果的,且心、肝、脾、肺及腎重要器官並沒有造成嚴重的傷害。本研究證實了HGCNIPNs在光熱力及光動力療法應用中具有一定潛力,藉由光療先抑制癌細胞,再使藥物緩慢從載體中釋放達到光/化學治療同時並行,達到減少藥劑用量和副作用的目的,且載體只需在水中簡單混合並且無創注射即可治療,在合成、保存、藥物輸送和臨床應用方面都具有相當大的優勢,可望在未來有近一步的發展。
摘要(英) Breast cancer is the most common cancer among women in my country, with a peak incidence between the ages of 45 and 69 and the leading cause of cancer death in women worldwide. Among various types of breast cancer, triple-negative breast cancer has high drug resistance and a high recurrence rate during treatment, which in turn leads to high mortality, and is prone to early metastasis clinically, and there are few treatment options. At present, the drug treatment is still mainly chemotherapy. In recent years, hydrogels have been widely used for tumor drug delivery. A hydrogel drug carrier can cause less side effects than systemic chemotherapy and can achieve sustained delivery of a drug at tumor sites. We have developed an injectable hydrogel which prepared from divalent cations (Ca2+) and sodium alginate. This hydrogel contains camptothecin (CPT) nanoparticles and indocyanine green (ICG) perfluorocarbon nanoemulsions (HGCNIPNs) and can provide photo/chemotherapy at the same time. Through DLS analysis, the size of CPTNPs and ICGNPs are 483.23±113.0 nm and 219.76±13.11 nm, respectively, the potentials are 28.51±3.35 mV and -33.27±4.90 mV, and both of nanoparticles have high encapsulation rate, which are higher than 92%. In comparison to freely dissolved ICG, the ICG in the hydrogel enhances thermal stability and provides a comparable hyperthermia effect, and the production of singlet oxygen under near-infrared (NIR; 808 nm, 6 W/cm2) irradiation is significantly increased. In addition, in vitro cell experiments showed that HGCNIPNs (ICG=160 μM; CPT=300 μM) are more cytotoxic than the same concentration of Free CPT and CPTNPs groups, with significant differences in survival rates of 23.57%, 75.80% and 68.12%, respectively. The results of in vivo animal studies showed that HGCNIPNs are most effective in tumor suppression at ICG of 160 μM and CPT of 300 μM, and don′t cause serious damage to vital organs such as heart, liver, spleen, lung and kidney. This study confirms that HGCNIPNs have great potential in the application of photothermal and photodynamic therapy, through phototherapy to inhibit cancer cells first, and then use the drug to slowly release from the carrier to achieve simultaneous photo/chemotherapy, reducing the dosage and side effects. Alginate hydrogel can be treated by simply mixing in water and noninvasive injection. It has considerable advantages in synthesis, storage, drug delivery, and clinical applications, and HGCNIPNs are expected to have further development in the future.
關鍵字(中) ★ 乳腺癌
★ 靛氰綠
★ 全氟碳化物
★ 喜樹鹼
★ 海藻酸鹽
★ 可注射型水凝膠
★ 光化學治療
關鍵字(英)
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 xi
表目錄 xiv
縮寫符號說明 xv
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 乳腺癌(Breast cancer) 4
2-1-1 乳腺癌分類 4
2-1-2 乳腺癌分期 8
2-1-3 乳腺癌致病因素 10
2-1-4 乳腺癌治療方式 11
2-2 光治療(Phototherapy) 13
2-2-1 光敏劑(Photosensitizer, PS) 14
2-2-2 光熱力(Photothermal therapy, PTT) 15
2-2-3 光動力(Photodynamic therapy, PDT) 16
2-3 藥品 17
2-3-1 海藻酸鈉(Sodium alginate) 17
2-3-2 喜樹鹼(Camptothecin, CPT) 19
2-3-3 殼聚醣(Chitosan) 21
2-3-4 靛氰綠(Indocyanine green, ICG) 22
2-3-5 全氟碳化物(Perfluorocarbons, PFC) 23
第三章 實驗材料及步驟 24
3-1 實驗藥品及儀器設備 24
3-1-1 實驗藥品 24
3-1-2 儀器設備 26
3-2 實驗流程 28
3-3 CPT奈米粒子製備 (CPTNPs) 29
3-4 ICG全氟碳雙層奈米乳劑之製備 (ICGNPs) 30
3-5 CPTNPs & ICGNPs之基礎物理性質測定 34
3-5-1 包覆率分析 34
3-5-2 載藥率分析 35
3-5-3 粒徑分析 35
3-5-4 表面電位分析 36
3-5-5 超高真空場發射掃描式電子顯微鏡拍攝(FE-SEM) 36
3-6 製備含有CPTNPs、ICGNPs之海藻酸鈉水凝膠(HGCNIPNs) 36
3-7 CPTNPs & HGCNIPNs藥物釋放測定 38
3-7-1 CPTNPs & HGCNIPNs靜態下藥物累積釋放 38
3-7-2 HGCNIPNs照光後藥物釋放 38
3-8 Free ICG、ICGNPs、HGCNIPNs藥物熱穩定測定 39
3-9 HGCNIPNs之機械性質 39
3-9-1 流變儀測定、黏度分析 39
3-9-2 熱重分析 (TGA) 40
3-10 ICG水溶液、ICGNPs、HGCNIPNs光療效果試驗 40
3-10-1 光熱效果檢測 40
3-10-2 光動力療法 41
3-11 體外試驗 42
3-11-1 細胞培養 42
3-11-2 體外細胞毒性測試 43
3-12 動物試驗 45
3-12-1 動物試驗流程 45
3-12-2 HGCNIPNs之體內抗癌療效實驗 46
3-12-3化療藥物殘藥量試驗(體內毒理學試驗) 47
3-12-4 生化及血球數分析 47
3-12-5 器官組織學分析 48
3-13 統計與分析 48
第四章 結果與討論 49
4-1基礎物理性質 49
4-1-1 水凝膠之外觀 49
4-1-2 CPTNPs、ICGNPs之包覆率及載藥率 49
4-1-3 CPTNPs、ICGNPs之粒徑及表面電位 50
4-1-4 表面型態分析 51
4-1-5 CPTNPs & HGCNIPNs藥物釋放測定 53
4-1-6 Free ICG & ICGNPs & HGCNIPNs熱穩定分析 56
4-2 HGCNIPNs機械性質測定 58
4-2-1 流變儀 58
4-2-2 熱種分析儀(TGA) 59
4-3 Free ICG & ICGNPs & HGCNIPNs光治療功能測定 60
4-3-1 光熱力治療(升溫效果試驗) 60
4-3-2 光動力治療(單態氧生成效果試驗) 62
4-4 體外試驗 64
4-4-1 Free ICG & HGIPNs之體外細胞試驗 64
4-5 體內試驗 68
4-5-1 HGCNIPNs的體內殺腫瘤作用 68
4-5-2 體內系統毒性分析 71
4-5-3 生化及血球數分析 72
4-5-4 器官組織學分析 74
第五章 結論 77
第六章 未來展望 78
參考文獻 79
參考文獻 1. 110 年國人死因統計分析結果. 2022063]; Available from: https://dep.mohw.gov.tw/dos/lp-5069-113-xCat-y110.html.
2. 2020 年估計年齡標準化發病率和死亡率(世界). 2021; Available from: https://reurl.cc/anbKVX.
3. Wawruszak, A., et al., Valproic acid and breast cancer: State of the art in 2021. Cancers, 2021. 13(14): p. 3409.
4. Dai, X., et al., Breast cancer intrinsic subtype classification, clinical use and future trends. American journal of cancer research, 2015. 5(10): p. 2929.
5. Vuong, D., et al., Molecular classification of breast cancer. Virchows Archiv, 2014. 465(1): p. 1-14.
6. Bonacho, T., F. Rodrigues, and J. Liberal, Immunohistochemistry for diagnosis and prognosis of breast cancer: a review. Biotechnic & Histochemistry, 2020. 95(2): p. 71-91.
7. Kavarthapu, R., R. Anbazhagan, and M.L. Dufau, Crosstalk between PRLR and EGFR/HER2 Signaling Pathways in Breast Cancer. Cancers, 2021. 13(18): p. 4685.
8. Aaliyari-Serej, Z., et al., Recent Advances in Targeting of Breast Cancer Stem Cells Based on Biological Concepts and Drug Delivery System Modification. Advanced Pharmaceutical Bulletin, 2020. 10(3): p. 338.
9. Liu, Z., X.-S. Zhang, and S. Zhang, Breast tumor subgroups reveal diverse clinical prognostic power. Scientific reports, 2014. 4(1): p. 1-9.
10. Kennecke, H., et al., Metastatic behavior of breast cancer subtypes. Journal of clinical oncology, 2010. 28(20): p. 3271-3277.
11. Guarneri, V. and P. Conte, Metastatic breast cancer: therapeutic options according to molecular subtypes and prior adjuvant therapy. The oncologist, 2009. 14(7): p. 645-656.
12. van Ramshorst, M.S., et al., Neoadjuvant chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for HER2-positive breast cancer (TRAIN-2): a multicentre, open-label, randomised, phase 3 trial. The Lancet Oncology, 2018. 19(12): p. 1630-1640.
13. Harbeck, N. and O. Gluz, Neoadjuvant therapy for triple negative and HER2-positive early breast cancer. The Breast, 2017. 34: p. S99-S103.
14. Wuerstlein, R. and N. Harbeck, Neoadjuvant therapy for HER2-positive breast cancer. Reviews on recent clinical trials, 2017. 12(2): p. 81-92.
15. Jitariu, A.-A., et al., Triple negative breast cancer: the kiss of death. Oncotarget, 2017. 8(28): p. 46652.
16. Chun, K.-H., J.H. Park, and S. Fan, Predicting and overcoming chemotherapeutic resistance in breast cancer. Translational Research in Breast Cancer, 2017: p. 59-104.
17. O′Reilly, D., M. Al Sendi, and C.M. Kelly, Overview of recent advances in metastatic triple negative breast cancer. World Journal of Clinical Oncology, 2021. 12(3): p. 164.
18. Gerdes, J., et al., Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. International journal of cancer, 1983. 31(1): p. 13-20.
19. Urruticoechea, A., I.E. Smith, and M. Dowsett, Proliferation marker Ki-67 in early breast cancer. Journal of clinical oncology, 2005. 23(28): p. 7212-7220.
20. Nishimura, R., et al., Ki-67 as a prognostic marker according to breast cancer subtype and a predictor of recurrence time in primary breast cancer. Experimental and therapeutic medicine, 2010. 1(5): p. 747-754.
21. Cheang, M.C., et al., Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. JNCI: Journal of the National Cancer Institute, 2009. 101(10): p. 736-750.
22. de Ruijter, T.C., et al., Characteristics of triple-negative breast cancer. Journal of cancer research and clinical oncology, 2011. 137(2): p. 183-192.
23. Foulkes, W.D., I.E. Smith, and J.S. Reis-Filho, Triple-negative breast cancer. New England journal of medicine, 2010. 363(20): p. 1938-1948.
24. Teichgraeber, D.C., M.S. Guirguis, and G.J. Whitman, Breast Cancer Staging: Updates in the AJCC Cancer Staging Manual, and Current Challenges for Radiologists, From the AJR Special Series on Cancer Staging. American Journal of Roentgenology, 2021. 217(2): p. 278-290.
25. Hortobagyi, G.N., S.B. Edge, and A. Giuliano, New and important changes in the TNM staging system for breast cancer. American society of clinical oncology educational book, 2018. 38: p. 457-467.
26. Cserni, G., et al., The new TNM-based staging of breast cancer. Virchows Archiv, 2018. 472(5): p. 697-703.
27. Kamińska, M., et al., Breast cancer risk factors. Menopause Review/Przegląd Menopauzalny, 2015. 14(3): p. 196-202.
28. Key, T.J., P.K. Verkasalo, and E. Banks, Epidemiology of breast cancer. The lancet oncology, 2001. 2(3): p. 133-140.
29. Rak, K.P., układ odpornościowy a odżywianie. Poradnik dla pacjentów. MedPharm, Wrocław, 2009.
30. Bagnardi, V., et al., Light alcohol drinking and cancer: a meta-analysis. Annals of oncology, 2013. 24(2): p. 301-308.
31. Bauer, S.R., et al., Plasma vitamin D levels, menopause, and risk of breast cancer: dose-response meta-analysis of prospective studies. Medicine, 2013. 92(3): p. 123.
32. Yang, X.R., et al., Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. Journal of the National Cancer Institute, 2011. 103(3): p. 250-263.
33. Clendenen, T.V., et al., Breast cancer risk prediction in women aged 35–50 years: impact of including sex hormone concentrations in the Gail model. Breast Cancer Research, 2019. 21(1): p. 1-12.
34. Brewer, H.R., et al., Family history and risk of breast cancer: an analysis accounting for family structure. Breast cancer research and treatment, 2017. 165(1): p. 193-200.
35. Sun, Y.-S., et al., Risk factors and preventions of breast cancer. International journal of biological sciences, 2017. 13(11): p. 1387.
36. Momenimovahed, Z. and H. Salehiniya, Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer: Targets and Therapy, 2019. 11: p. 151.
37. Waks, A.G. and E.P. Winer, Breast cancer treatment: a review. Jama, 2019. 321(3): p. 288-300.
38. Sledge, G.W., et al., Past, present, and future challenges in breast cancer treatment. Journal of clinical oncology, 2014. 32(19): p. 1979.
39. Den Hollander, P., M.I. Savage, and P.H. Brown, Targeted therapy for breast cancer prevention. Frontiers in oncology, 2013. 3: p. 250.
40. Sternschuss, M., et al., Efficacy and safety of neoadjuvant immune checkpoint inhibitors in early-stage triple-negative breast cancer: a systematic review and meta-analysis. Journal of Cancer Research and Clinical Oncology, 2021. 147(11): p. 3369-3379.
41. Henriques, B., F. Mendes, and D. Martins, Immunotherapy in breast cancer: when, how, and what challenges? Biomedicines, 2021. 9(11): p. 1687.
42. Hak, A., V.R. Shinde, and A.K. Rengan, A review of advanced nanoformulations in phototherapy for cancer therapeutics. Photodiagnosis and Photodynamic Therapy, 2021. 33: p. 102205.
43. 詹宗晃.劉敏醫師. 財團法人台灣癌症基金會. Available from: https://www.canceraway.org.tw/page.php?IDno=532.
44. Elmore, J.G., et al., Screening for breast cancer. Jama, 2005. 293(10): p. 1245-1256.
45. Cyran, C.C., et al., Permeability to macromolecular contrast media quantified by dynamic MRI correlates with tumor tissue assays of vascular endothelial growth factor (VEGF). European Journal of Radiology, 2012. 81(5): p. 891-896.
46. Lee, C., et al., Chlorella-gold nanorods hydrogels generating photosynthesis-derived oxygen and mild heat for the treatment of hypoxic breast cancer. Journal of Controlled Release, 2019. 294: p. 77-90.
47. Yang, S., et al., Paying attention to tumor blood vessels: Cancer phototherapy assisted with nano delivery strategies. Biomaterials, 2021. 268: p. 120562.
48. Chen, L., et al., Tumor‐targeted drug and CpG delivery system for phototherapy and docetaxel‐enhanced immunotherapy with polarization toward M1‐type macrophages on triple negative breast cancers. Advanced Materials, 2019. 31(52): p. 1904997.
49. Lee, Y.-H. and D.-S. Chang, Fabrication, characterization, and biological evaluation of anti-HER2 indocyanine green-doxorubicin-encapsulated PEG-b-PLGA copolymeric nanoparticles for targeted photochemotherapy of breast cancer cells. Scientific reports, 2017. 7(1): p. 1-13.
50. Liao, Y.-T., et al., Biocompatible and multifunctional gold nanorods for effective photothermal therapy of oral squamous cell carcinoma. Journal of Materials Chemistry B, 2019. 7(28): p. 4451-4460.
51. Tang, J., et al., Enhanced anti-tumor efficacy of temozolomide-loaded carboxylated poly (amido-amine) combined with photothermal/photodynamic therapy for melanoma treatment. Cancer Letters, 2018. 423: p. 16-26.
52. Lee, Y.-H. and Y.-C. Lin, Anti-EGFR indocyanine green-mitomycin C-loaded perfluorocarbon double nanoemulsion: A novel nanostructure for targeted photochemotherapy of bladder cancer cells. Nanomaterials, 2018. 8(5): p. 283.
53. Wan, Z., et al., NIR light-assisted phototherapies for bone-related diseases and bone tissue regeneration: A systematic review. Theranostics, 2020. 10(25): p. 11837.
54. Olejniczak, J., C.-J. Carling, and A. Almutairi, Photocontrolled release using one-photon absorption of visible or NIR light. Journal of Controlled Release, 2015. 219: p. 18-30.
55. Silva, J.M., E. Silva, and R.L. Reis, Light-triggered release of photocaged therapeutics-Where are we now? Journal of Controlled Release, 2019. 298: p. 154-176.
56. Yang, G., et al., Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. Coordination Chemistry Reviews, 2016. 320: p. 100-117.
57. Juzenas, P., et al., Noninvasive fluorescence excitation spectroscopy during application of 5-aminolevulinic acid in vivo. Photochemical & Photobiological Sciences, 2002. 1(10): p. 745-748.
58. Zhao, W., et al., Remote light‐responsive nanocarriers for controlled drug delivery: Advances and perspectives. Small, 2019. 15(45): p. 1903060.
59. Saneja, A., et al., Recent advances in near-infrared light-responsive nanocarriers for cancer therapy. Drug Discovery Today, 2018. 23(5): p. 1115-1125.
60. Noble, G.T., et al., Ligand-targeted liposome design: challenges and fundamental considerations. Trends in biotechnology, 2014. 32(1): p. 32-45.
61. Wang, C., et al., Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials, 2011. 32(26): p. 6145-6154.
62. Raza, A., et al., “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review. Journal of Materials Research and Technology, 2019. 8(1): p. 1497-1509.
63. Yan, C., Y. Zhang, and Z. Guo, Recent progress on molecularly near-infrared fluorescent probes for chemotherapy and phototherapy. Coordination Chemistry Reviews, 2021. 427: p. 213556.
64. Fan, W., P. Huang, and X. Chen, Overcoming the Achilles′ heel of photodynamic therapy. Chemical Society Reviews, 2016. 45(23): p. 6488-6519.
65. Yang, X., et al., Near-infrared light-activated IR780-loaded liposomes for anti-tumor angiogenesis and Photothermal therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 2018. 14(7): p. 2283-2294.
66. Liu, Y., et al., Dopamine‐melanin colloidal nanospheres: an efficient near‐infrared photothermal therapeutic agent for in vivo cancer therapy. Advanced materials, 2013. 25(9): p. 1353-1359.
67. Zou, Y., et al., A single molecule drug targeting photosensitizer for enhanced breast cancer photothermal therapy. Small, 2020. 16(18): p. 1907677.
68. Cheng, L., et al., Activation of prodrugs by NIR‐triggered release of exogenous enzymes for locoregional chemo‐photothermal therapy. Angewandte Chemie International Edition, 2019. 58(23): p. 7728-7732.
69. Younis, M.R., et al., Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nanoagents. ACs Nano, 2019. 13(2): p. 2544-2557.
70. Han, H.S. and K.Y. Choi, Advances in nanomaterial-mediated photothermal cancer therapies: toward clinical applications. Biomedicines, 2021. 9(3): p. 305.
71. Zhang, Y., et al., Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Scientific reports, 2018. 8(1): p. 1-9.
72. Ali, M.R., et al., Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis. International journal of nanomedicine, 2016. 11: p. 4849.
73. Mroz, P., et al., Stimulation of anti-tumor immunity by photodynamic therapy. Expert review of clinical immunology, 2011. 7(1): p. 75-91.
74. Xu, X., H. Lu, and R. Lee, Near infrared light triggered photo/immuno-therapy toward cancers. Frontiers in bioengineering and biotechnology, 2020. 8: p. 488.
75. Gunaydin, G., M.E. Gedik, and S. Ayan, Photodynamic therapy—current limitations and novel approaches. Frontiers in Chemistry, 2021. 9: p. 691697.
76. Lim, M.E., et al., Photodynamic inactivation of viruses using upconversion nanoparticles. Biomaterials, 2012. 33(6): p. 1912-1920.
77. Kharkwal, G.B., et al., Photodynamic therapy for infections: clinical applications. Lasers in surgery and medicine, 2011. 43(7): p. 755-767.
78. Macdonald, I.J. and T.J. Dougherty, Basic principles of photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2001. 5(02): p. 105-129.
79. Shi, H. and P.J. Sadler, How promising is phototherapy for cancer? British journal of cancer, 2020. 123(6): p. 871-873.
80. Calixto, G.M.F., et al., Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules, 2016. 21(3): p. 342.
81. Benslima, A., et al., The brown seaweed Cystoseira schiffneri as a source of sodium alginate: Chemical and structural characterization, and antioxidant activities. Food Bioscience, 2021. 40: p. 100873.
82. Pan, H., et al., In situ fabrication of intelligent photothermal indocyanine green–alginate hydrogel for localized tumor ablation. ACS applied materials & interfaces, 2018. 11(3): p. 2782-2789.
83. Zeng, Y., et al., Injectable microcryogels reinforced alginate encapsulation of mesenchymal stromal cells for leak-proof delivery and alleviation of canine disc degeneration. Biomaterials, 2015. 59: p. 53-65.
84. Jadach, B., W. Świetlik, and A. Froelich, Sodium alginate as a pharmaceutical excipient: novel applications of a well-known polymer. Journal of Pharmaceutical Sciences, 2022.
85. Shaikh, M.A.J., et al., Sodium alginate based drug delivery in management of breast cancer. Carbohydrate Polymers, 2022: p. 119689.
86. Pawar, S.N. and K.J. Edgar, Alginate derivatization: A review of chemistry, properties and applications. Biomaterials, 2012. 33(11): p. 3279-3305.
87. Thomas, C.J., N.J. Rahier, and S.M. Hecht, Camptothecin: current perspectives. Bioorganic & medicinal chemistry, 2004. 12(7): p. 1585-1604.
88. Tyner, K.M., S.R. Schiffman, and E.P. Giannelis, Nanobiohybrids as delivery vehicles for camptothecin. Journal of Controlled Release, 2004. 95(3): p. 501-514.
89. Pizzolato, J.F. and L.B. Saltz, The camptothecins. The Lancet, 2003. 361(9376): p. 2235-2242.
90. Pommier, Y., Topoisomerase I inhibitors: camptothecins and beyond. Nature Reviews Cancer, 2006. 6(10): p. 789-802.
91. Martino, E., et al., The long story of camptothecin: From traditional medicine to drugs. Bioorganic & medicinal chemistry letters, 2017. 27(4): p. 701-707.
92. Divya, K. and M. Jisha, Chitosan nanoparticles preparation and applications. Environmental chemistry letters, 2018. 16(1): p. 101-112.
93. Bugnicourt, L. and C. Ladavière, Interests of chitosan nanoparticles ionically cross-linked with tripolyphosphate for biomedical applications. Progress in polymer science, 2016. 60: p. 1-17.
94. Gierszewska, M. and J. Ostrowska-Czubenko, Equilibrium swelling study of crosslinked chitosan membranes in water, buffer and salt solutions. Progress on Chemistry and Application of Chitin and its Derivatives, 2016. 21: p. 55-62.
95. Zhao, H., et al., Tailoring Aggregation Extent of Photosensitizers to Boost Phototherapy Potency for Eliciting Systemic Antitumor Immunity. Advanced Materials, 2022. 34(8): p. 2106390.
96. Kumari, A. and S. Gupta, Two‐photon excitation and direct emission from S2 state of US Food and Drug Administration approved near‐infrared dye: Application of anti‐Kasha′s rule for two‐photon fluorescence imaging. Journal of Biophotonics, 2019. 12(1): p. e201800086.
97. Porcu, E.P., et al., Indocyanine green delivery systems for tumour detection and treatments. Biotechnology Advances, 2016. 34(5): p. 768-789.
98. Tovar, J.S.D., et al. Photodegradation in the infrared region of indocyanine green in aqueous solution. in 2019 SBFoton International Optics and Photonics Conference (SBFoton IOPC). 2019. IEEE.
99. Topaloglu, N., M. Gulsoy, and S. Yuksel, Antimicrobial photodynamic therapy of resistant bacterial strains by indocyanine green and 809-nm diode laser. Photomedicine and laser surgery, 2013. 31(4): p. 155-162.
100. Miller, M.A. and E.M. Sletten, Perfluorocarbons in Chemical Biology. ChemBioChem, 2020. 21(24): p. 3451-3462.
101. Krafft, M.P. and J.G. Riess, Perfluorocarbons: Life sciences and biomedical uses Dedicated to the memory of Professor Guy Ourisson, a true RENAISSANCE man. Journal of Polymer Science Part A: Polymer Chemistry, 2007. 45(7): p. 1185-1198.
102. Song, X., et al., Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano letters, 2016. 16(10): p. 6145-6153.
103. Jacoby, C., et al., Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half‐lives and sensitivity. NMR in Biomedicine, 2014. 27(3): p. 261-271.
104. Vlachou, M., et al., Probing the release of the chronobiotic hormone melatonin from hybrid calcium alginate hydrogel beads. Acta Pharmaceutica, 2020. 70(4): p. 527-538.
105. Bae, K.H., et al., Pluronic/chitosan shell cross-linked nanocapsules encapsulating magnetic nanoparticles. Journal of Biomaterials Science, Polymer Edition, 2008. 19(12): p. 1571-1583.
106. Estelrich, J. and M.A. Busquets, Iron oxide nanoparticles in photothermal therapy. Molecules, 2018. 23(7): p. 1567.
指導教授 李宇翔 審核日期 2022-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明