參考文獻 |
[1] J. W. Hardy, "Adaptive optics for astronomical telescopes", Oxford University Press on Demand, 1998.
[2] B. C. Platt and R. Shack, "History and Principles of Shack-Hartmann Wavefront Sensing", Journal of Refractive Surgery, 17, 2001.
[3] D. R. Neal, J. Copland, and D. A. Neal, "Shack-Hartmann wavefront sensor precision and accuracy", International Society for Optics and Photonics, 4779, 2002.
[4] D. Malacara, "Optical shop testing", John Wiley & Sons, 2007.
[5] B. M. Welsh, B. L. Ellerbroek, M. C. Roggemann, and T. L. Pennington, "Fundamental performance comparison of a Hartmann and a shearing interferometer wave-front sensor", Applied optics, 34, 1995.
[6] L. Seifert, J. Liesener, and H. J. Tiziani, "The adaptive Shack–Hartmann senso", Optics Communications, 216, 2003.
[7] C. Schwarz, O. Hüter, and T. Brixner, "Full vector-field control of ultrashort laser pulses utilizing a single dual-layer spatial light modulator in a common-path setup", J. Opt. Soc. Am. B, 32, 2015.
[8] M. Ninck, A. Galler, T. Feurer, and T. Brixner, "Programmable common-path vector field synthesizer for femtosecond pulses", Opt. Lett., 32, 2007.
[9] H. Gebbie and N. Stone, "A Michelson interferometer for far infrared spectroscopy of gases", Infrared physics, 4, 1964.
[10] G. Xiao, A. Adnet, Z. Zhang, F. Sun, and C. Grover, "Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor", Sensors and Actuators A Physical, 118, 2005.
[11] M. Plewicki, S. M. Weber, F. Weise, and A. Lindinger, "Independent control over the amplitude, phase, and polarization of femtosecond pulses", Applied Physics B, 86, 2007.
[12] Z. A. Zaky, A. M. Ahmed, A. S. Shalaby, and A. H. Aly, "Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimisation", Scientific Reports, 10, 2020.
[13] P. M. C. Rourke et al., "Refractive-index gas thermometry", Metrologia, 56, 2019.
[14] N. Fabricius, G. Gauglitz, and J. Ingenhoff, "A gas sensor based on an integrated optical Mach-Zehnder interferometer", Sensors and Actuators B: Chemical, 7, 1992.
[15] P. W. Smith, "A Waveguide Gas Laser", Applied Physics Letters, 19, 1971.
[16] M. Ibadul Islam et al., "Design of single mode spiral photonic crystal fiber for gas sensing applications", Sensing and Bio-Sensing Research, 13, 2017.
[17] J. Chamberlain, F. Findlay, and H. Gebbie, "The measurement of the refractive index spectrum of HCl gas in the near infrared using a Michelson interferometer", Applied Optics, 4, 1965.
[18] R. Pan et al., "All-Fiber Fabry-Perot Interferometer Gas Refractive Index Sensor Based on Hole-Assisted One-Core Fiber and Vernier Effect", IEEE Sensors Journal, 21, 2021.
[19] H. B. Chae, J. W. Schmidt, and M. R. Moldover, "Alternative refrigerants R123a, R134, R141b, R142b, and R152a: critical temperature, refractive index, surface tension, and estimates of liquid, vapor, and critical densities", Journal of Physical Chemistry, 94, 1990.
[20] J. W. Schmidt and M. R. Moldover, "Alternative Refrigerants Ch2F2 and C2Hf5-Critical-Temperature, Refractive-Index, Surface-Tension, and Estimates of Liquid, Vapor, and Critical Densities", Journal of Chemical and Engineering Data, 39, 1994.
[21] J. Yata, M. Hori, H. Kawakatsu, and T. Minamiyama, "Measurements of the refractive index of alternative refrigerants", International journal of thermophysics, 17, 1996.
[22] U. Gubler and C. Bosshard, "Optical third-harmonic generation of fused silica in gas atmosphere: Absolute value of the third-order nonlinear optical susceptibility", Physical Review B, 61, 2000.
[23] H. J. Lehmeier, W. Leupacher, and A. Penzkofer, "Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation", Optics Communications, 56, 1985.
[24] J. F. Ward and G. H. C. New, "Optical Third Harmonic Generation in Gases by a Focused Laser Beam", Physical Review, 185, 1969.
[25] D. P. Shelton, "Nonlinear-optical susceptibilities of gases measured at 1064 and 1319 nm", Physical Review A, 42, 1990.
[26] S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, "Measurement of the nonlinear refractive index of air constituents at mid-infrared wavelengths", Opt. Lett., 40, 2015.
[27] J.-F. Ripoche et al., "Determination of the time dependence of n2 in air", Optics Communications, 135, 1997.
[28] E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, "Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses", J. Opt. Soc. Am. B, 14, 1997.
[29] K. Birch and M. Downs, "An updated Edlén equation for the refractive index of air", Metrologia, 30, 1993.
[30] O. Kruger and N. Chetty, "Robust air refractometer for accurate compensation of the refractive index of air in everyday use", Applied Optics, 55, 2016.
[31] Online resources : ThorLabs, "Spatial Filters Tutorial," ed.
[32] A. C. Simmons, "The refractive index and Lorentz-Lorenz functions of propane, nitrogen and carbon-dioxide in the spectral range 15803–22002 cm−1 and at 944 cm−1", Optics Communications, 25, 1978.
[33] Y. Clergent, C. Durou, and M. Laurens, "Refractive Index Variations for Argon, Nitrogen, and Carbon Dioxide at λ = 632.8 nm (He−Ne Laser Light) in the Range 288.15 K ≤ T ≤ 323.15 K, 0 < p < 110 kPa", Journal of Chemical & Engineering Data, 44, 1999. |