以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:73 、訪客IP:18.118.154.250
姓名 蘇耘(Yun Su) 查詢紙本館藏 畢業系所 光機電工程研究所 論文名稱 飛秒雷射於液面下藍寶石通孔之初期研究
(Research on sapphire drilling by femtosecond laser processing underwater)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 在5G產業興起的浪潮下,藍寶石基板因為其耐高溫、高硬度、抗腐蝕、高透光、介電系數高等特點,常用作光電元件與基板的材料。然而藍寶石基板的優秀特性也注定其加工難度相較於其他材料困難許多,而目前消費性電子產品逐漸輕薄短小的趨勢,使得加工尺寸與精度的要求不停縮小,傳統加工方式逐漸難以完成這些需求。近年超短脈衝雷射之雷射源逐漸商業化,其被視為具有潛力的工具之一,運用脈衝雷射對藍寶石等硬脆材料的研究也逐漸增多。本研究將整合奈米飛秒雷射與高速高精之六軸移動平台,建立物鏡加工系統,固定光源並移動平台以達到雷射與材料相對運動之方式,針對200 μm厚度之藍寶石規劃雷射加工路徑,將試片置於液面下完成微孔之鑽孔,分析探討不同情形對於雷射加工的影響,並改善其孔洞品質。 摘要(英) Sapphire substrates are often used as materials for optoelectronic components and substrates because of their high-temperature resistance, high hardness, corrosion resistance, high light transmission, and high dielectric coefficient with the rise of the 5G industry. However, the excellent characteristics of the sapphire substrate also make it more difficult to be processed than other materials. The trend of consumer electronic products is becoming lighter, thinner, and shorter, which makes the requirements for processing size and precision continue to shrink, and traditional processing methods are gradually difficult to meet these requirements. In recent years, the laser source of ultra-short pulse laser has been gradually commercialized, and it is regarded as one of the potential tools. The research on hard and brittle materials such as sapphire using pulse laser has also gradually increased. This research integrates the femtosecond laser with a high-speed and high-precision six-axis platform, establishes laser processing system to achieve the relative motion between the laser and the material, and plans the laser for a sapphire with a thickness of 200 μm. The processing path is to place the material under water to complete the drilling of micro-holes, analyze the influence of different situations on the laser processing, and improve the hole quality. 關鍵字(中) ★ 雷射加工
★ 飛秒雷射
★ 藍寶石
★ 鑽孔關鍵字(英) ★ Laser machining
★ Femtosecond laser
★ Sapphire
★ Drilling論文目次 摘要........................................................................................................................i
Abstract .................................................................................................................ii
誌謝......................................................................................................................iii
目錄......................................................................................................................iv
圖目錄.................................................................................................................vii
表目錄................................................................................................................... x
符號說明..............................................................................................................xi
一、 前言 ......................................................................................................... 1
1-1 研究背景與動機 ................................................................................... 1
1-2 文章架構................................................................................................ 2
二、 文獻回顧與基礎理論............................................................................. 4
2-1 藍寶石基本性質.................................................................................. 4
2-2 雷射加工原理...................................................................................... 5
2-3 雷射加工方法...................................................................................... 7
2-3-1 雷射燒蝕加工 .................................................................................. 7
2-3-2 雷射輔助加工 .................................................................................. 8
2-3-3 雷射改質搭配化學蝕刻.................................................................. 9
2-3-4 隱形切割 ........................................................................................ 11
v
2-3-5 液體輔助加工 ................................................................................ 11
2-4 影響雷射加工參數............................................................................ 12
2-4-1 脈衝重複頻率 ................................................................................ 12
2-4-2 脈衝重疊率 .................................................................................... 13
2-4-3 脈衝能量 ........................................................................................ 14
2-5 雷射鑽孔品質量化............................................................................ 15
2-5-1 圓孔錐度(Taper angle)................................................................... 15
三、 運作系統及原理................................................................................... 16
3-1 雷射出光系統...................................................................................... 16
3-2 運動控制系統...................................................................................... 22
3-3 實驗架構.............................................................................................. 25
四、 實驗方法與結果討論........................................................................... 26
4-1 實驗設備............................................................................................ 26
4-2 實驗流程............................................................................................ 27
4-3 實驗方法與分析................................................................................ 30
4-3-1 掃描策略 ........................................................................................ 32
4-3-2 水面下對焦 .................................................................................... 32
4-3-3 水中與空氣中加工比較................................................................ 33
4-3-4 水中與空氣中燒蝕效率比較........................................................ 34
vi
4-3-5 不同雷射參數對加工結果影響.................................................... 35
4-3-6 出口臨界加工 ................................................................................ 38
4-3-7 下表面孔洞周圍損傷 .................................................................... 41
4-3-8 蝕刻進行品質優化........................................................................ 44
4-4 實驗結果............................................................................................ 47
五、 結論與未來展望................................................................................... 50
5-1 結論...................................................................................................... 50
5-2 未來展望.............................................................................................. 51
六、 參考文獻............................................................................................... 52參考文獻 [1] Bruni, F. J. (2015). Crystal growth of sapphire for substrates for high‐brightness, light emitting diodes. Crystal Research and Technology, 50(1), 133-142.
[2] Liu, H., Li, Y., Lin, W., & Hong, M. (2020). High-aspect-ratio crack-free microstructures fabrication on sapphire by femtosecond laser ablation. Optics & Laser Technology, 132, 106472.
[3] Wen, Q., Wei, X., Jiang, F., Lu, J., & Xu, X. (2020). Focused Ion Beam Milling of Single-Crystal Sapphire with A-, C-, and M-Orientations. Materials, 13(12), 2871.
[4] Esco Optics. Sapphire. https://escooptics.com/pages/sapphire
[5] 鄭中緯. (2008). 飛秒雷射在材料微細加工的應用. 科儀新知(164), 27-32.
[6] Capuano, L., Pohl, R., Tiggelaar, R., Berenschot, J., Gardeniers, J., & Römer, G. (2018). Morphology of single picosecond pulse subsurface laser-induced modifications of sapphire and subsequent selective etching. Optics express, 26(22), 29283-29295.
[7] Vailionis, A., Gamaly, E. G., Mizeikis, V., Yang, W., Rode, A. V., & Juodkazis, S. (2011). Evidence of superdense aluminium synthesized by ultrafast microexplosion. Nature Communications, 2(1), 1-6.
[8] Lott, G., Falletto, N., Devilder, P.-J., & Kling, R. (2016). Optimizing the processing of sapphire with ultrashort laser pulses. Journal of Laser Applications, 28(2), 022206.
[9] Liu, H., Lin, W., & Hong, M. (2021). Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications. Light: Science & Applications, 10(1), 1-23.
[10] Long, J., Zhou, C., Cao, Z., Xie, X., & Hu, W. (2019). Incubation effect during laser-induced backside wet etching of sapphire using high-repetition-rate near-infrared nanosecond lasers. Optics & Laser Technology, 109, 61-70.
[11] Dwikusuma, F., Saulys, D., & Kuech, T. (2002). Study on sapphire surface preparation for III-nitride heteroepitaxial growth by chemical treatments. Journal of The Electrochemical Society, 149(11), G603.
[12] Shen, J., Zhang, D., Wang, Y., & Gan, Y. (2017). Crystallographic and topographical evolutions of a cylinder patterned sapphire substrate etched with a sulfuric acid and phosphoric acid mixture: an SEM and AFM study. CrystEngComm, 19(42), 6383-6390.
[13] Juodkazis, S., & Misawa, H. (2008). Laser processing of sapphire by strongly focused femtosecond pulses. Applied Physics A, 93(4), 857-861.
[14] Capuano, L., Tiggelaar, R., Berenschot, J., Gardeniers, J., & Römer, G. (2020). Fabrication of millimeter-long structures in sapphire using femtosecond infrared laser pulses and selective etching. Optics and Lasers in Engineering, 133, 106114.
[15] Yadav, A., Kbashi, H., Kolpakov, S., Gordon, N., Zhou, K., & Rafailov, E. U. (2017). Stealth dicing of sapphire wafers with near infra-red femtosecond pulses. Applied Physics A, 123(5), 1-7.
[16] Lu, J., Xu, R., Chen, X., Shen, Z., Ni, X., Zhang, S., & Gao, C. (2004). Mechanisms of laser drilling of metal plates underwater. Journal of applied physics, 95(8), 3890-3894.
[17] Hammer, D. X., Jansen, E. D., Frenz, M., Noojin, G. D., Thomas, R. J., Noack, J., Vogel, A., Rockwell, B. A., & Welch, A. J. (1997). Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs. Applied Optics, 36(22), 5630-5640.
[18] Kruusing, A. (2004). Underwater and water-assisted laser processing: Part 2—Etching, cutting and rarely used methods. Optics and Lasers in Engineering, 41(2), 329-352.
[19] Ren, N., Xia, K., Yang, H., Gao, F., & Song, S. (2021). Water-assisted femtosecond laser drilling of alumina ceramics. Ceramics International, 47(8), 11465-11473.
[20] Duangwas, S., Tangwarodomnukun, V., & Dumkum, C. (2014). Development of an overflow-assisted underwater laser ablation. Materials and Manufacturing Processes, 29(10), 1226-1231.
[21] Shaheen, M., Gagnon, J., & Fryer, B. (2015). Experimental study on 785 nm femtosecond laser ablation of sapphire in air. Laser Physics Letters, 12(6), 066103.
[22] Schnell, G., Duenow, U., & Seitz, H. (2020). Effect of laser pulse overlap and scanning line overlap on femtosecond laser-structured Ti6Al4V surfaces. Materials, 13(4), 969.
[23] Putzer, M., Ackerl, N., & Wegener, K. (2021). Geometry assessment of ultra-short pulsed laser drilled micro-holes. The International Journal of Advanced Manufacturing Technology, 117(7), 2445-2452.
[24] Mishchik, K., Gaudfrin, K., & Lopez, J. (2017). Drilling of through holes in sapphire using femto-second laser pulses. Journal of Laser Micro Nanoengineering, 12(3), 321-324.
[25] Ghoreishi, M., Low, D., & Li, L. (2002). Comparative statistical analysis of hole taper and circularity in laser percussion drilling. International Journal of Machine Tools and Manufacture, 42(9), 985-995.
[26] Akhatov, I., Lindau, O., Topolnikov, A., Mettin, R., Vakhitova, N., & Lauterborn, W. (2001). Collapse and rebound of a laser-induced cavitation bubble. Physics of Fluids, 13(10), 2805-2819.
[27] Ohl, C.-D., Arora, M., Dijkink, R., Janve, V., & Lohse, D. (2006). Surface cleaning from laser-induced cavitation bubbles. Applied physics letters, 89(7), 074102.
[28] Kumar, P., Lee, J., Lee, G., Rao, S., Singh, D., & Singh, R. K. (2013). Low temperature wet etching to reveal sub-surface damage in sapphire substrates. Applied surface science, 273, 58-61.指導教授 董必正(Pi-Cheng Tung) 審核日期 2022-8-30 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare