博碩士論文 109226058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:138 、訪客IP:3.145.65.167
姓名 吳紘維(Hong-Wei Wu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 高品質因數次波長波導光柵折射率感測器之設計與分析
(Design and analysis of a high figure of merit refractive index sensor based on subwavelength waveguide grating)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯透明導電膜與其成長模型之研究
★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率★ 化學氣相沉積石墨烯透明導電膜之製程與分析
★ 應用光學導納軌跡法提升太陽能選擇性吸收膜之光熱轉換效率研究★ 單晶銅成長石墨烯及其可撓性之研究
★ 高反射多層膜抗雷射損傷閥值之研究★ 高穿透類鑽碳膜之研究
★ 裝備具有低光斑的抗眩光膜層★ 透鏡品質檢測基於四波橫向剪切干涉儀
★ 利用介電係數趨近零材料設計層狀寬帶超穎吸收膜★ 抑制層對降低電漿輔助原子層沉積二氧化鉿薄膜結晶之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文中,將使用波導光柵的結構來設計高品質因數折射率感測器,這種結構是由波導模態共振效應與表面光柵結合。其中,波導模態效振效應會使入射光入射至光柵之中時產生出繞射光,則繞射光會在波導層之中激發出TE/TM 的波導模態,且被光柵結構所激發的模態會在傳播一段距離之後洩漏出去,當兩道洩漏的繞射光相位匹配時,就會有共振產生。
利用Rsoft Diffrac MOD模擬軟體進行模擬及分析一維波導光柵結構,並在結構上覆蓋一層高折射率薄膜。在覆蓋薄膜之後,會讓靈敏度減少從260.1至251.9(nm/RIU)下降了3.15%但因為光柵層的等效折射率增加,則能量更加地集中在結構之中,然而半峰全寬(Full width at half maximum,FWHM)就會變得更窄,TM模態的FWHM從原本1.8 × 10-3nm變窄至3 × 10-4nm,使變窄的FWHM讓品質因數(Figure of Merit,FOM)從144500(1/RIU)增加到839666(1/RIU)提升了481%。
在透過電場圖得知當改變結構參數,會因等效折射率提升和束縛模態與輻射模態之間的正交關係,使電場能量從一開始分散在結構之中變成侷限在等效波導層之中進行傳遞。
摘要(英) In this paper, we combine the waveguide mode resonance effect with a surface grating structure called a waveguide grating to design a high figure of merit refractive index sensor. When the incident light is incident on the grating, the diffracted wave will be generated, and the diffracted wave will excite the TE/TM waveguide mode in the waveguide layer, and the mode excited by the grating structure will leak out after propagating for a certain distance. When the phases of the two leaked diffracted waves are matched, resonance will occur.
Using Rsoft Diffrac MOD simulation software to simulate and analyze the one-dimensional waveguide grating structure, and cover the structure with a high refractive index film. After covering the film, the sensitivity reduction decreases by 3.15% from 260.1 to 251.9 (nm/RIU), but because the equivalent refractive index of the grating layer increases, the energy is more concentrated in the structure, while the full width at half maximum ( Full width at half maximum, FWHM) will become narrower, and the FWHM of the TM mode is narrowed from 1.8 × 10-3nm to 3 × 10-4nm, making the narrowed FWHM lower the quality factor (Figure of Merit, FOM). ) increased from 144500 (1/RIU) to 839666 (1/RIU) by 481%.
It can be seen from the electric field diagram that when the structural parameters are changed, due to the increase in the effective refractive index and the orthogonal relationship between the bound mode and the radiation mode, the electric field energy will be dispersed in the structure from the beginning to confined in the effective waveguide transfer between layers.
關鍵字(中) ★ 波導模態共振
★ 波導光柵
★ 品質因數
★ 折射率感測器
關鍵字(英) ★ GMR
★ waveguide grating
★ Figure of merit
★ refractive index sensor
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 v
表目錄 vi
第一章 緒論 1
1-1前言 1
1-2波導模態共振簡介 2
1-3文獻回顧 5
1-4研究目的與動機 11
第二章 基礎理論 13
2-1 波導理論 13
2-2等效介質理論 19
2-3嚴格耦合波理論 22
第三章 結果與討論 29
3-1 光譜模擬結果 29
3-2 入射角度對於靈敏度的影響 33
3-3光柵高度對於半峰全寬的影響 39
3-4光柵填充率對共振位置的影響 42
3-5 改變雙參數對靈敏度、FOM的影響 46
3-6 薄膜對於靈敏度和FOM的影響 54
第四章 結論 64
參考文獻 [1] Z. S. Liu, S. Tibuleac, D. Shin, pp. pp. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Optics Letters, 23(19), pp. 1556-1558, (1998).
[2] R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant Photonic Biosensors with Polarization-Based Multiparametric Discrimination in Each Channel,” Sensors, 11(2), pp. 1476-1488, (2011).
[3] . Paulsen, S. Jahns, M. Gerken,“ Intensity-based readout of resonantwaveguide grating biosensors: systems and nanostructures,” Photonics Nanostructures, 26, pp.69-79,(2017).
[4] S. Jahns, F. von Oertzen, T. Karrock, Y. Nazirizadeh, M. Gerken, “Photonic Crystal Slabs for Biosensing,” Progress in Electromagnetics Research Symposium Proceedings, pp.1217–1220, (2014).
[5] M. Piliarik, J. Homola, Z. Manı´kova, and J. Cˇ tyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sensors and Actuators B, 90(1-3), pp. 236-242, (2003).
[6] J. Zhu, L. Qin, S. Song, J. Zhong, and S. Lin, “Design of a Surface Plasmon Resonance Sensor Based on Grating Connection,” Photonic Sensors, 5(2), pp. 159-165, (2015).
[7] I. D. Villar, A. B. Socorro, M. Hernaez, J. M. Corres, C. R. Zamarreño, pp. Sanchez, F. J. Arregui, and I. R. Matias, “Sensors Based on Thin-Film Coated Cladding Removed Multimode Optical Fiber and Single-Mode Multimode Single-Mode Fiber: A Comparative Study,”.Journal of Sensors, pp. 1-7, (2015).
[8] W. T. Hsu, W. H. Hsieh, S. F. Cheng, C. pp. Jen, C. C. Wu, C. H. Li, C. Y. Lee, W. Y. Li, L. K. Chau, C. Y. Chiang, and S. R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip ,“. Analytica Chimica Acta, 697(1-2), pp. 75-82, (2011).
[9] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,”. Proc. Phys. Soc. London, 18(1), pp. 269–275, (1902).
[10] A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,”. Appl. Opt. 4(10), pp.1275–1297, (1965).
[11] M. Sarrazin and J. pp. Vigneron, “Bounded modes to the rescue of optical transmission,”. Europhys. News, 38(3), pp.27–31, (2007).
[12] R. R. Boye, R. W. Ziolkowski, R. K. Kostuk, “Resonant waveguide-grating switching device with nonlinear optical material,”. Appl. Opt, 38(24), pp.5181–5185, (1999).
[13] J. H. Lin, Y. C. Huang, N. D. Lai, H. C. Kan, and C. C. Hsu, “Optical modulation of guided mode resonance in the waveguide grating structure incorporated with azo-doped-poly(methylmethacrylate) cladding layer,”. Opt. Express, 20(1), pp. 377–384, (2012).
[14] J. H. Lin, J. H. Huang, H. C. Kan, and C. C. Hsu, “Optical tuning of guided mode resonance in an azo-copolymer waveguide grating structure inscribed with a surface relief grating,”. Adv. Device Mater., 1(3), pp. 74–79, (2015).
[15] Y. Nazirizadeh, F. Oertzen, T. Karrock, J. Greve, and M. Gerken, “Enhanced sensitivity of photonic crystal slab transducers by oblique-angle layer deposition,”. Opt. Express, 21(16), pp. 18661–18670, (2013).
[16] S. Zhang, Y. Wang, S. Wang, and W. Zheng, “Wavelength-tunable perfect absorber based on guided-mode resonances,”. Appl. Opt., 55(12), pp. 3176–3181, (2016).
[17] D. Rosenblatt, A. Sharon. and A. A. Friesem, “Resonant grating waveguide structures,”. IEEE Journal of Quant. Electronics, 33(11), pp. 2038–2059, (1997).
[18] N. Darwish, L. Dieguez, M. Moreno, F. Munoz, R. Mas, J. Mas, J. Samitier, B. Nilsson, G. Petersson, “Second order effects of aspect ratio variations in high sensitivity grating couplers,”. Microelectron Eng, 84(5-8), pp. 1775-1778, (2007).
[19] J.G. Wangueeme rt Perez, pp. Cheben, A. Ortega Monux, C. Alonso Ramos, D. Perez Galacho, R. Halir, I. Molina Fernandez, D.X. Xu, Schmid J.H., “Evanescent field waveguide sensing with subwavelength grating structures in silicon on insulator,”. Opt Lett, 39(15), pp. 4442-4445, (2014).
[20] R. Horvath, H.C. Pedersen, N. D. Skivesen, Selmeczi, N.B. Larsen, “Optical waveguide sensor for on line moni toring of bacteria,”. Opt Lett, 28(14), pp. 1233-1235, (2003).
[21] B.K. Kim, K.H. Kim, J. Hong, W.J. Kim, H. Ko, C. Huh, G.Y. Sung, W.I. Jang, S.H. Park, S.J. Park, “Sensitivity material thickness for an optical resonant reflective biosensor based response to coating material thickness for an optical resonant reflective biosensor based on a guided mode resonance filter,”. BioChip J, 8(1), pp. 35–41 (2014).
[22] H.Y. Li, W.C. Hsu, K.C. Liu, Y.L. Chen, L.K. Chau, S. Hsieh, W.H. Hsieh, “A low cost, label free biosensor based on a novel double sided grating waveguide coupler with sub surface cavities,”. Sensor Actuat B Chem, 206, pp. 371-380, (2015).
[23] S. Isaacs, A. Hajoj, M. Abutoama, A. Kozlovsky, E. Golan, I. Abdulhalim. “Resonant Grating without a Planar Waveguide Layer as a Refractive Index Sensor,”. Sensors, 19(13), pp. 3003, (2019).
[24] Y. Zhou, X. Li, S. Li, Z. Guo, pp. Zeng, J. He, D. Wang, R. Zhang, M. Lu, S. Zhang, “Symmetric guided-mode resonance sensors in aqueous media with ultrahigh figure of merit,”. Opt. Express, 27(24), pp. 34788–34802, (2019).
[25] S. Sahu, J. Ali, G. Singh. “Refractive index biosensor using sidewall gratings in dualslot waveguide,”. Opt Commun,402(1), pp.408–412, (2017).
[26] Y. N. Bao, X. H. Liu, J. H. Hu, J. Zou, H. Y. Han, and C. Wang, “Enhanced optical sensing performance in stacked resonant compound gratings,”. Opt. Express, 29(18), pp.29458-29465, (2021).
[27] S. Mesli, H. Yala, M. Hamidi, A. BelKhir, F.I. Baida. “High performance for refractive index sensors via symmetry-protected guided mode resonance,”. Opt Express, 29(14), pp.21199-21211, (2021).
[28] Y. Y. Li1, Y. Liu, Z. Q. Liu, Q. Tang, L. L. Shi, Q. Q. Chen, G. Z. Du, B. Wu, G. Q. Liu, L. Li., “Grating-assisted ultra-narrow multispectral plasmonic resonances for sensing application,”. Appl. Phys. Expp.,12(7), (2019).
[29] X. X. Wang, J. K. Zhu, X. L. Wen, X. X. Wu, Y. Wu, Y. W. Su, H. Tong, Y. pp. Qi, H. Yang. “Wide range refractive index sensor based on a coupled structure of Au nanocubes and Au film,”. Opt. Mater. Expp., 9(7), pp. 3079, (2019).
[30] Z. Liu, G. Liu, X. Liu, and G. Fu, “Plasmonic sensors with an ultra-high figure of merit,”. Nanotechnology, 31(11), pp.115208, (2020).
[31] Y. F. Chou Chau, C. T. Chou Chao, H. J. Huang, M. R. R. Kooh, NTRN Kumara, C. M. Lim, H. pp. Chiang, “Perfect dual-band absorber based on plasmonic moniceffect with the cross-hair/nanorod combination,”. Nanomaterials, 10(3), pp. 493, (2020).
[32] G. Z. Li, Y. Shen, G. H. Xiao, and C. J. Jin. “Double-layered metal grating for high-performance refractive index sensing,”. Opt. Express, 23(7), pp.8995-9003, (2015).
[33] S. Sahu, J. Ali, and G. Singh, “Refractive index biosensor using sidewall gratings in dual-slot waveguide,”. Optics Communications, 402, pp.408‒412, (2017).
[34] Y. Zhou, B. Wang, Z. Guo, X. Wu, “Guided Mode Resonance Sensors with Optimized Figure of Merit,”. Nanomaterials, 9(6), pp. 837, (2019).
[35] G. Lan, S. Zhang, H. Zhang, Y. Zhu, L. Qing, D. Li, J. Nong, W. Wang, L. Chen, W. Wei, “High-performance refractive index sensor based on guided-mode resonance in all-dielectric nano-silt array,”. Phys. Lett. A, 383(13), pp.1478–1482, (2019).
[36] L. Y. Qian, K. N. Wang, W. Zhu, C. Q. Han, C. C. Yan. “Enhanced sensing ability in a single-layer guided-mode resonant optical biosensor with deep grating,”. Optics Communications, 452, pp. 273-280, (2019).
[37] T. Smirnova, V. Fitio, O. Sakhno, pp. Yezhov, A. Bendziak, V. Hryn, S. Bellucci. “Resonant and Sensing Performance of Volume Waveguide Structures Based on Polymer Nanomaterials,”. Nanomaterials, 10(11), pp.2114, (2020).
[38] C. Zhang, Y. Zhou, L. Mi, J. Ma, X. Wu, Y. Fei. “High Performance of a Metal Layer-Assisted Guided-Mode Resonance Biosensor Modulated by Double-Grating,”. Biosensors ,11(7), pp. 221, (2021).
[39] M. Piliarik, J. Homola, Z. Manı´kova, and J. C tyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sensors and Actuators B, 90(1-3), pp. 236-242, (2003).
[40] J. Zhu, L. Qin, S. Song, J. Zhong, and S. Lin, “Design of a Surface Plasmon Resonance Sensor Based on Grating Connection,” Photonic Sensors, 5(2), pp. 159-165, (2015).
[41] T. Kobayashi, Y. Kanamori, K. Hane. “Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure,”. Appl. Phys. Lett. 87(15), pp.151106, (2005).
[42] L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,”. J. Mod. Opt. 40(4), pp.553–573, (1993).
[43] R. R. Boye and R. K. Kostuk, “Investigation of the effect of finite grating size on the performance of guided-mode resonance filters,”. Appl. Opt. 39(21), pp. 3649–3653, (2000).
[44] K. Knop, “Rigorous diffraction theory for transmission phase grating with deep rectangular grooves,”. J. Opt. Soc. Am., 68(9), pp. 1206-1210, (1978).
[45] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,”. J. Opt. Soc. Am., 73(4), pp. 451-455, (1983).
[46] S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,”. Appl. Opt.,32(14), pp. 2606-2613, (1993).
[47] S. S. Wang, R. Magnusson, J. S. Bagby, M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,”. J. Opt. Soc. Am., 7(8), pp. 1470-1474, (1990).
[48] T. Sang, L. Wang, S. Ji, Y. Ji, H. Chen, and Z. Wang, “Systematic study of the mirror effect in a poly-Si subwavelength periodic membrane,”. J. Opt. Soc. Am., 26(3), pp. 559–565, (2009).
[49] J.R. Piper, S.H. Fan. “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,”. ACS Photonics, 1(4), pp.347–353, (2014).
[50] L.Y. Qian, K.N. Wang, Dmitry A. Bykov, Y.F. Xu, L. Zhu, and C.C. Yan, “Improving the sensitivity of guided-mode resonance sensors under oblique incidence condition,”. Opt. Express, 27(21), pp. 30563-30575, (2019)
[51] E. Andrey. Miroshnichenko, Sergej Flach, and Yuri S. Kivshar, “Fano resonances in nanoscale structures,”. Rev, Mod. Phys., 82(3), pp. 2257-2298, (2010).
[52] Scott M. Norton, Turan Erdogan, and G. Michael Morris, “Coupled-mode theory of resonant-grating filters,”. J. Opt. Soc. Am. A ,14(3), pp. 629-639, (1997).
[53] B. Yuan, F. Zhang, and T. Ning, “Relationship between linewidth and electric field intensity of guide-mode resonance filter,”. Optik-Int. J. Light Electron Opt. 123(5), pp. 439–441 (2012).
[54] W.X. Liu, Y.H. Li, H.T. Jiang, Z.Q. Lai, and H. Chen, “Controlling the spectral width in compound waveguide grating structures, ”. Opt. Lett., 38(2), pp. 163-165 (2013).
[55] R. Horvath, L. C. Wilcox, H. C. Pedersen, N. Skivesen, J. S. Hesthaven, pp. M. Johansen. “Analytical and numerical study on grating depth effects in grating coupled waveguide sensors,”. Appl. Phys. B 81(1), pp. 65–73, (2005).
[56] G. Zheng, X. Zou, L. Xu, J. Wang, “Single layer narrow bandwidth angle-insensitive guided-mode resonance badstop filters.”. Optik, 130, pp. 19–23, (2017).
指導教授 郭倩丞(Chien-Cheng Kuo) 審核日期 2022-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明