參考文獻 |
[1] Y. Li, W. A. Dick, and O. H. Tuovinen, "Fluorescence microscopy for visualization of soil microorganisms—a review," Biology and fertility of soils 39, 301-311 (2004).
[2] D. Errampalli, K. Leung, M. Cassidy, M. Kostrzynska, M. Blears, H. Lee, and J. Trevors, "Applications of the green fluorescent protein as a molecular marker in environmental microorganisms," Journal of Microbiological Methods 35, 187-199 (1999).
[3] E. M. Goldys, Fluorescence applications in biotechnology and life sciences (John Wiley & Sons, 2009).
[4] F. Kamp, N. Exner, A. K. Lutz, N. Wender, J. Hegermann, B. Brunner, B. Nuscher, T. Bartels, A. Giese, and K. Beyer, "Inhibition of mitochondrial fusion by α‐synuclein is rescued by PINK1, Parkin and DJ‐1," The EMBO journal 29, 3571-3589 (2010).
[5] J. N. Stojanović, S. A. Radosavljević, R. D. Tošović, A. M. Pačevski, A. S. Radosavljević-Mihajlović, V. D. Kašić, and N. S. Vuković, "A review of the Pb-Zn-Cu-Ag-Bi-W polymetallic ore from the Rudnik orefield, Central Serbia," Geoloski anali Balkanskoga poluostrva 79, 47-69 (2018).
[6] S. Dai, J. C. Hower, C. R. Ward, W. Guo, H. Song, J. M. O′Keefe, P. Xie, M. M. Hood, and X. Yan, "Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau," International Journal of Coal Geology 144, 23-47 (2015).
[7] K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, "Miniaturized integration of a fluorescence microscope," Nature methods 8, 871-878 (2011).
[8] G. Rice, "Fluorescent Microscopy," https://serc.carleton.edu/microbelife/research_methods/microscopy/fluromic.html.
[9] A. Nwaneshiudu, C. Kuschal, F. H. Sakamoto, R. R. Anderson, K. Schwarzenberger, and R. C. Young, "Introduction to confocal microscopy," Journal of Investigative Dermatology 132, 1-5 (2012).
[10] T. Wilson, Confocal microscopy (Academic press London, 1990).
[11] J. Pawley, Handbook of biological confocal microscopy (Springer Science & Business Media, 2006).
[12] K. Svoboda, and R. Yasuda, "Principles of two-photon excitation microscopy and its applications to neuroscience," Neuron 50, 823-839 (2006).
[13] P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, "Two-photon excitation fluorescence microscopy," Annual review of biomedical engineering 2, 399-429 (2000).
[14] E. J. Sánchez, L. Novotny, and X. S. Xie, "Near-field fluorescence microscopy based on two-photon excitation with metal tips," Physical Review Letters 82, 4014 (1999).
[15] R. Y. Tsien, and A. Waggoner, "Fluorophores for confocal microscopy," in Handbook of biological confocal microscopy(Springer, 1995), pp. 267-279.
[16] G. Cox, and C. J. Sheppard, "Practical limits of resolution in confocal and non‐linear microscopy," Microscopy research and technique 63, 18-22 (2004).
[17] J. A. Squier, M. Müller, G. Brakenhoff, and K. R. Wilson, "Third harmonic generation microscopy," Optics express 3, 315-324 (1998).
[18] X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, "Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure," Nature protocols 7, 654-669 (2012).
[19] D. Yelin, and Y. Silberberg, "Laser scanning third-harmonic-generation microscopy in biology," Optics express 5, 169-175 (1999).
[20] B. Huang, M. Bates, and X. Zhuang, "Super resolution fluorescence microscopy," Annual review of biochemistry 78, 993 (2009).
[21] L. Schermelleh, R. Heintzmann, and H. Leonhardt, "A guide to super-resolution fluorescence microscopy," Journal of Cell Biology 190, 165-175 (2010).
[22] B. O. Leung, and K. C. Chou, "Review of super-resolution fluorescence microscopy for biology," Applied spectroscopy 65, 967-980 (2011).
[23] J. Vangindertael, R. Camacho, W. Sempels, H. Mizuno, P. Dedecker, and K. Janssen, "An introduction to optical super-resolution microscopy for the adventurous biologist," Methods and applications in fluorescence 6, 022003 (2018).
[24] M. G. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," Journal of microscopy 198, 82-87 (2000).
[25] R. Heintzmann, and T. Huser, "Super-resolution structured illumination microscopy," Chemical reviews 117, 13890-13908 (2017).
[26] H. Blom, and J. Widengren, "Stimulated emission depletion microscopy," Chemical reviews 117, 7377-7427 (2017).
[27] S. W. Hell, and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy," Optics letters 19, 780-782 (1994).
[28] E. Auksorius, B. R. Boruah, C. Dunsby, P. M. Lanigan, G. Kennedy, M. A. Neil, and P. M. French, "Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging," Optics letters 33, 113-115 (2008).
[29] J. Fischer, and M. Wegener, "Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy," Optical Materials Express 1, 614-624 (2011).
[30] S. Bretschneider, "Ground State Depletion Fluorescence Microscopy," (2008).
[31] J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, "Fluorescence nanoscopy by ground-state depletion and single-molecule return," Nature methods 5, 943-945 (2008).
[32] K. Y. Han, S. K. Kim, C. Eggeling, and S. W. Hell, "Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution," Nano letters 10, 3199-3203 (2010).
[33] S. Chong, W. Min, and X. S. Xie, "Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature," The journal of physical chemistry letters 1, 3316-3322 (2010).
[34] EZEISS, "Education in Microscopy and Digital Imaging," https://zeiss-campus.magnet.fsu.edu/articles/superresolution/supersim.html.
[35] G. Paës, A. Habrant, and C. Terryn, "Fluorescent nano-probes to image plant cell walls by super-resolution STED microscopy," Plants 7, 11 (2018).
[36] lecia, "3D Localization Microscope Leica SR GSD 3D," https://www.leica-microsystems.com/solutions/life-science/neuroscience/leica-sr-gsd-3d/downloads/.
[37] H. Wang, C. J. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, "Fighting against diffraction: apodization and near field diffraction structures," Laser & Photonics Reviews 6, 354-392 (2012).
[38] OLYMPUS, "Jablonski Energy Diagram," https://www.olympus-lifescience.com/zh/microscope-resource/primer/java/jablonski/jabintro/.
[39] V. Sun, "Dissecting Two-Photon Microscopy," http://www.signaltonoisemag.com/allarticles/2018/9/17/dissecting-two-photon-microscopy.
[40] 洪瑞廷, "基態耗損結構照明三倍頻顯微術," https://hdl.handle.net/11296/svqq77.
[41] M. Yamashita, A. Kuniyasu, and H. Kashiwagi, "Intersystem crossing rates and saturation parameters in the triplet state for rhodamine, fluorescein, and acridine dyes," The Journal of Chemical Physics 66, 986-988 (1977).
[42] S. Prahl, "Rhodamine 6G," https://omlc.org/spectra/PhotochemCAD/html/083.html.
[43] S. Prahl, "Eosin Y," https://omlc.org/spectra/PhotochemCAD/html/061.html.
[44] T. Fisher, "FluoSpheres™ Carboxylate-Modified Microspheres 產品號碼: F8800," https://www.thermofisher.com/order/catalog/product/F8800.
[45] T. Fisher, "FluoSpheres™ Carboxylate-Modified Microspheres 產品號碼: F8801," https://www.thermofisher.com/order/catalog/product/F8801. |