博碩士論文 106286602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.139.86.160
姓名 阮光鈳(Quang-Khoi Nguyen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 白光發光二極體之藍光溢漏之研究
(Study of blue light leakage of white light light-emitting diode)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-31以後開放)
摘要(中) 摘 要
在白光二極體之藍光溢漏之研究 的論文中,我們提出並演示了解決熒光粉時藍光洩漏相關問題(例如,眼睛損傷)的解決方案- 轉換後的白光發光二極管 (pcW-LED) 過熱。發現在正常運行期間溫度高於設定值時,熒光粉嚴重熱猝滅時會出現潛在的藍光。高溫會導致熒光粉降解,使相關色溫升高,藍光和黃光的比例也會升高。這將導致用戶眼睛不可避免地暴露在低質量或藍光洩漏的白光中。需要找到解決藍光洩漏問題的方法。原則上,當發生過熱時,可以通過停止 pcW-LED 的工作來防止這種藍光洩漏。可以通過以下方式之一完成:
(1) 發生過熱時,通過減小電路中的電流來消除過熱現象。
(2) 當發生過熱時,使封裝體積變暗以抑制白色 LED 的亮度。
當由於老化而發生過熱時,電流的減少和封裝體積的變暗將抑制白色 LED 的亮度。由於輸出通量顯著衰減並且燈變得更暗。用戶可以理解更換禁用的白色 LED。
本研究重點介紹了兩種有效的方法,即被動法和主動法來防止藍光洩漏的影響。
在主動防藍光漏光的方法中,我們會開始設計主動保險絲,引入合適的熱敏電阻電子元件,具有合適的熱特性,以保護用戶免受老化白光LED的藍光危害。過熱狀態下產生的熱量將用於開啟熱敏電阻的高阻模式,以降低電路中的電流。對應電流的減小,過熱消失,產生低電平輸出光通量。至此,過熱問題得到解決。同時,低水平的光通量通知用戶更換新的 LED 燈。
在被動防藍光洩漏的方法中,將研究名為晶體納米纖維素(CNCs)的熱致變色材料的性能並進行精確表徵。基於封裝體積結構中過熱和藍光洩漏的溫度行為和CNCs的熱光學特性,將CNC引入pcW-LED的封裝體積結構中。過熱時CNCs會變暗,然後吸收藍光並導致燈的亮度受到抑制。低水平的光通量有助於用戶的眼睛避免暴露在藍光下,並通知用戶更換新的 LED 燈。在正常操作條件下,CNCs 不會顯著影響燈的亮度。
摘要(英) Abstract
In the dissertation of “Study of blue light leakage of white light light emitting diode”, we proposed and demonstrated solutions for solving problems related to blue light leakage (e.g., eye damage) when phosphor-converted white light-emitting diodes (pcW-LEDs) overheat. It was discovered that a potential bluish light occurs when serious thermal quenching for phosphor as the temperature is higher than the set value in a normal operation duration. The high temperature will cause degradation of phosphor so that the correlated color temperature will increase, and so does the ratio between blue and yellow light. This will cause unavoidable exposure to the low-quality or blue light leakage white light for the eyes of the user. It is demand to find the solution for the problem of blue light leakage. In principle, this exposure to blue light leakage can be prevented by stopping the working of pcW-LEDs when overheating happens. It can be done by one of the following ways:
(1) Remove the overheating phenomenon by reducing the current in the circuit when overheating happens.
(2) Darkening the packaging volume to suppress the brightness of a white LED when overheating happens.
The reduction of electrical current and darkening of packaging volume will suppress the brightness of a white LED when overheating is taking place due to aging. Since the output flux is significantly decayed and the lamp becomes dimmer. The user can understand to replace the disabled white LED.
This research focuses on two effective methods called passive method and active method for preventing the effect of blue leakage.
In the method of actively anti-blue light leakage, we will start to design an active fuse by introducing an appropriate electronic element of the thermistor with a suitable thermal characteristic to protect the user from the blue hazard of the aging white LED. The heat generated in an overheated state will be used to turn on the mode of high resistance of the thermistor to make reduce the current in the circuit. Corresponding to the decrease of current, the overheated will vanish and a low-level output luminous flux is generated. Thus, the overheating was solved. At the same time, the low level of luminous flux informs the user to replace a new LED lamp.
In the method of passively anti-blue light leakage, the property of the thermochromic material named crystal nanocellulose (CNC) will be investigated and making precise characterization. Based on the temperature behavior of overheating and blue light leakage in the packaging volume structures and thermal-optical properties of CNC, the CNC will be introduced in the packaging volume structures of pcW-LEDs. CNC will be darkened when overheating happen, then absorbing the blue light and causing the suppression in the brightness of the lamp. The low level of luminous flux helps the user′s eyes to avoid exposure to bluish light and informs the user to replace a new LED lamp. Under the normal operation condition, CNC do not significantly affect the brightness of the lamp.
關鍵字(中) ★ 白 光
★ 藍 光 溢 漏
關鍵字(英) ★ white light
★ Blue light leakage
論文目次 Table of Contents
Pages
Chinese Abstract.................................................................................... vi
English Abstract.................................................................................... viii
Acknowledgements............................................................................... x
Table of Contents.................................................................................. xii
List of Figures ...................................................................................... xvii
List of Tables ........................................................................................ xxviii
Explanation of Symbols......................................................................... xxix
Chapter 1 Introduction..................................................................... 1
1.1 Overview......................................................................... 1
1.2 Proposed solution for the problem of blue light leakage. 4
1.3 Photobiological safety of lamps and lamp systems……. 5
1.3.1 Retinal blue light hazard exposure limit……………….. 6
1.3.2 Retinal blue light hazard exposure limit for small source 8
1.4 Structure of the dissertation............................................. 9
Chapter 2 Basic on solid state lighting ............................................ 12
2.1 History on the development of LEDs.............................. 12
2.2 LED basics...................................................................... 14
2.3 Phosphor material for generation of white light............. 17
2.3.1 Short introduction on yellow phosphor………………... 17
2.3.2 Requirement for luminescence material……………….. 19
2.4 Dichromatic approach for white light generation .......... 20
2.4.1 Structure of white light light emitting diodes…………. 20
2.4.2 Working principle of pc-WLEDs……………………... 23
2.5 Characteristics of white LEDs ....................................... 24
2.5.1 Luminous efficiency…………………………………... 24
2.5.2 Color temperature……………………………………... 26
2.5.3 Color rendering index…………………………………. 26
2.5.4 Spatial color uniformity……………………………….. 28
2.5.5 Blue light hazard………………………………………. 30
Chapter 3 Heat problem in white light emitting diodes ................. 32
3.1 Two main sources for heat generation............................ 32
3.2 Influence of temperature on properties of output light .. 35
3.2.1 Experiment…………………………………………….. 35
3.2.2 Result and discussion………………………………….. 36
3.3 General comment on effect of overheat......................... 48
Chapter 4 Passive anti-blue light leakage ……………………….. 50
4.1 Method for packaging and working principle………… 50
4.2 Investigation the properties of CNC ………………….. 52
4.3 Transmission of CNC material versus the temperature. 56
4.4 Reversible property of CNC ………………………...... 57
4.5 Irreversible property of CNC after being darkened …... 60
4.6 Effect of darkened CNC on the CCT of white light…... 61
4.7 Characteristic of color of CNC versus temperature ….. 62
4.8 Effect of CNC on the transmitted flux of pcW-LEDs ... 64
4.9 Effect of CNC at normal working condition ……..…... 67
4.10 Effect of CNC at abnormal working condition ………. 71
4.11 Optimize the weight concentration of CNC ………….. 76
Chapter 5 Enhancement of spatial color uniformity using CNC… 78
5.1 Introduction on problem of spatial color non-uniformity 78
5.2 Design and working principle of solution using CNC .. 83
5.3 Properties of CNC material …………………………… 84
5.4 Optical properties of pcW-LEDs with using CNC ……. 89
Chapter 6 Active anti-blue light leakage driven by constant current 101
6.1 Introduction on components for making the circuit ….. 101
6.2 Practical evidence of the blue light leakage problem… 105
6.3 Relationship of blue light leakage and thermal effects.. 107
6.4 Design the circuit for problem of blue light leakage …. 110
6.5 Testing working of the circuit when overheat happens.. 118
6.6 Demonstration of active anti-blue light leakage ……… 120
Chapter 7 Active anti-blue light leakage driven by constant voltage 127
7.1 Effect of overheat on performance of pcW-LEDs ……. 127
7.2 Circuit design and working principle of the solution … 129
7.2.1 Introduction to temperature switch……………………. 129
7.2.2 Circuit connection diagram……………………………. 131
7.2.3 Working principle of the circuit……………………….. 132
7.3 Demonstration of the working of the designed circuit .. 134
7.3.1 The working of the designed circuit at normal condition 136
7.3.2 Working of the designed circuit at abnormal condition. 138
Chapter 8 Conclusion and direction for future research ………… 143
8.1 Conclusion. …………………………………………... 143
8.1.1 Passive method for anti-blue light leakage…………….. 143
8.1.2 Active method for anti-blue light leakage……………... 144
8.2 Direction for future research ………………………….. 146
References............................................................................................. 148
List of publications................................................................................ 162
參考文獻 REFERENCES
[1] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274-1278 (2005).
[2] N. Narendran and Y. Gu, "Life of LED-Based White Light Sources," J. Display Technol. 1, 167-171 (2005).
[3] Y. Y. Chang, Z. Y. Ting, C. Y. Chen, T. H. Yang, and C. C. Sun, "Design of Optical Module With High Stability, High Angular Color Uniformity, and Adjustable Light Distribution for Standard Lamps," J. Display Technol. 10, 223-227 (2014)
[4] C. C. Sun, C. Y. Chen, C. C. Chen, C. Y. Chiu, Y. N. Peng, Y. H. Wang, T. H. Yang, T. Y. Chung, and Cheng-Yang Chung, "High uniformity in angular correlated-color-temperature distribution of white LEDs from 2800K to 6500K," Opt. Express 20, 6622-6630 (2012).
[5] C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Sol. State Light. 1, 19 (2014).
[6] S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schuberta, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes”, J. Appl. Phys. 97, 054506 (2005).
[7] Y. F. Su , S. Y. Yang , T. Y. Hung , C. C. Lee , and K. N. Chiang , “Light degradation test and design of thermal performance for high-power light-emitting diodes”, Microelectron. Reliab. 52, 794–803 (2012).
[8] J. L. Davis, K. C. Mills, G. Bobashev, K. J. Rountree, M. Lamvik, R. Yaga, and C. Johnson, “Understanding chromaticity shifts in LED devices through analytical models,” Microelectron. Reliab. 84, 149–156 (2018).
[9] M. Yazdan Mehr, A. Bahrami, W. D. van Driel, X. J. Fan, J. L. Davis, and G. Q. Zhang, “Degradation of optical materials in solid-state lighting systems,” Int. Mater. Rev. 65, 102-128 (2020).
[10] N. Narendran, Y. Gu, L. Jayasinghe, J. P. Freyssinier, and Y. Zhu, “Long-term performance of white LEDs and systems,” Proc. of First International Conference on White LEDs and Solid State lighting,174-179 (2007).
[11] P. Singh and C. M. Tan, “Degradation physics of high-power LEDs in outdoor environment and the role of phosphor in the degradation process,” Sci. Rep. 6, 24052 (2016).
[12] G. H. Ryu, B. Ma, and H. Y. Ryu, “Temperature dependence of the color rendering index of a phosphor-conversion white light-emitting diode,” AIP Adv. 9, 015009 (2019).
[13] W. Nemitz, P. Fulmek, J. Nicolics, F. Reil & F. P. Wenzl, “On the determination of the temperature distribution within the color conversion elements of phosphor converted LEDs,” Sci. Rep. 7, 9964 (2017).
[14] G. H. Ryu and H. Y. Ryu, “Analysis of the Temperature Dependence of Phosphor Conversion Efficiency in White Light-Emitting Diodes,” J. Opt. Soc. Korea 19, 311-316 (2015).
[15] G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, “Efficiency droop in InGaN/GaN blue lightemitting diodes: Physical mechanisms and remedies,” J. Appl. Phys. 114, 071101 (2013).
[16] B. J. Shih, S. C. Chiou, Y. H. Hsieh, C. C. Sun, T. H. Yang, S. Y. Chen, and T. Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23, 33861 (2015).
[17] R. Karileck, C.C. Sun, G. Zissis, and R. Ma, Handbook of Advanced Lighting Technology (Springer International Publishing Switzerland, 2015).
[18] C. Martinsons and G. Zissis, ‘Potential health issues of solid state lighting,’ IEA 4E final report. (2014).
[19] S. Point and J. Lambrozo, “Some evidences that white LEDs are toxic for human at domestic radiance?,” Radioprotection 52, 297-299 (2017).
[20] S. Point, “Blue Light Hazard: are exposure limit values protective enough for newborn infants?,” Radioprotection 53, 219-224 (2018).
[21] IEC 62471:2006 Photobiological Safety of Lamps and Lamp Systems.
[22] M. Y. Mehr, W. D. V. Driel, and G. Q. Zhang, “Progress in understanding Color Maintenance in Solid-State Lighting Systems,” Engineering 1, 170-178 (2015).
[23] S. Zhang, Z. Hao, L. Zhang, G. H. Pan, H. Wu, X. Zhang, Y. Luo, L. Zhang, H. Zhao, and J. Zhang, “Efficient Blue-emitting Phosphor SrLu2O4:Ce3+ with High Thermal Stability for Near Ultraviolet (~400 nm) LED-Chip based White LEDs,” Sci. Rep. 8, 10463 (2018).
[24] J. Wang, C. -C. Tsai, W. -C. Cheng, M. -H. Chen, C. -H. Chung, and W. -H. Cheng “High Thermal Stability of Phosphor-Converted White Light-Emitting Diodes Employing Ce:YAG-Doped Glass,” IEEE J. Sel. Top. Quantum Electron. 17, 741-746 (2011).
[25] J. Tang, F. Li, G. Yang, Y. Ge, Z. Li, Z. Xia, H. Shen, and H. Z. Zhong, “Reducing the Chromaticity Shifts of Light-Emitting Diodes Using Gradient-Alloyed CdxZn1-xSeyS1-y@ZnS Core Shell Quantum Dots with Enhanced High-Temperature Photoluminescence,” Adv. Optical Mater. 7, 1801687 (2019).
[26] M. Zhao, Z. Xia, X. Huang, L. Ning, R. Gautier, M. S. Molokeev, Y. Zhou, Y. C. Chuang, Q. Zhang, Q. Liu, and K. R. Poeppelmeier, “Li substituent tuning of LED phosphors with enhanced efficiency, tunable photoluminescence, and improved thermal stability”, Sci. Adv., 5, eaav0363 (2019).
[27] T. H. Yang, S. M. Wu, C. C. Sun, B. Glorieux, C. Y. Chen, Y. Y. Chang, X. H. Lee, Y. W. Yu, T. Y. Chung, and K. Y. Lai, "Stabilizing CCT in pcW-LEDs by self-compensation between excitation efficiency and conversion efficiency of phosphors," Opt. Express 25, 29287-29295 (2017).
[28] B. Fan, H. Wu, Y. Zhao, Y. Xian, and G. Wang, “Study of Phosphor Thermal-Isolated Packaging Technologies for High-Power White Light-Emitting Diodes,” IEEE Photon. Technol. Lett. 19, 1121-1123 (2007).
[29] N. Holonyak, and S.F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions. Appl. Phys. Lett. 1, 82–83 (1962).
[30] S. Nakamura, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys. 30, 1705–1707 (1991).
[31] https://en.wikipedia.org/wiki/Phase-out_of_incandescent_light_bulbs
[32] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353 (1986)
[33] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. 28, 2112-2114 (1989).
[34] S. Nakamura, M. Senoh, and T. Mukai, “Highly P-typed Mg-doped GaN films grown with GaN buffer layers,” Jpn. J. Appl. Phys. 30, 1708-1711 (1991).
[35] S. Nakamura, T. Mukai, M. Senoh, and N. Isawa, “Thermal annealing effects on P-type Mg-doped GaN films,” Jpn. J. Appl. Phys. 31, L139–L142 (1992).
[36] S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes,” Appl. Phys. Lett. 62, 2390-2392 (1993).
[37] S. Nakamura, S. Pearton, and G. Fasol, The blue laser diode (Springer, Berlin, 2000)
[38] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149-154 (1967).
[39] WLED YAG phosphors (CN-YY550L), http://www.china-glaze.com.tw/Downloads/CN-YY550L.pdf.
[40] R. Kasuya; T. Isobe; H. Kuma, and J. Katano, “Photoluminescence Enhancement of PEG-Modified YAG:Ce3+ Nanocrystal Phosphor Prepared by Glycothermal Method,” J. Phys. Chem. B. 109, 22126-22130 (2005).
[41] R.J. Xie, Q. L. Yuan, H. Naoto, and Y. Hajime, Nitride phosphors and solid-state lighting (Taylor & Francis, Boca Raton, 2011).
[42] C. C. Sun, and T. X. Lee, Optical Design for LED Solid State Lighting A guide ( IOP Publishing, 2022).
[43] P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting Conversion Phosphors for White Light-Emitting Diodes,” J. Electrochem. Soc. 158, R37-R54 (2011).
[44] S.P. Ying, H. K. Fu, W. F. Tang, and R. C. Hong, “The Study of Thermal Resistance Deviation of High-Power LEDs,” IEEE Trans. Electron. Devices. 61, 2843-2848 (2014).
[45] K. Górecki, and P. Ptak, “Compact Modelling of Electrical, Optical and Thermal Properties of Multi-Colour Power LEDs Operating on a Common PCB,” Energies 14, 1286 (2021).
[46] I. E. Titkov, S. Y. Karpov, A. Yadav, V. L. Zerova, M. Zulonas, B. Galler, M. Strassburg, I. Pietzonka, H. J. Lugauer, and E. U. Rafailov, “Temperature-Dependent Internal Quantum Efficiency of Blue High-Brightness LightEmitting Diodes,” IEEE J. Quantum Electron. 50, 911 (2014).
[47] A. Vaskuri, P. Kärhä, H. Baumgartner, O. Kantamaa,
T. Pulli, T. Poikonen, and E. Ikonen, “Relationships between junction temperature, electroluminescence spectrum and ageing of light-emitting diodes,” Metrologia 55, S86–S95 (2018).
[48] H. Y. Ryu, G. H. Ryu, C. Onwukaeme, and B. Ma, “Temperature dependence of the Auger recombination coefficient in InGaN/GaN multiple-quantum-well light-emitting diodes,” Opt. Express 28, 27459 (2020).
[49] W. Liu, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, J. J. Zhu, M. Shi, D. M. Zhao, X. Li, J. P. Liu, S. M. Zhang, H. Wang, H. Yang, Y. T. Zhang, and G. T. Du, “Temperature dependence of photoluminescence spectra for green light emission from InGaN/GaN multiple wells,” Opt. Express 23, 15935 (2015).
[50] Y. Lin, Z. Deng, Z. Guo, Z. Liu, H. Lan, Y. Lu, and Y. Cao, “Study on the correlations between color rendering indices and the spectral power distribution,” Opt. Express 22, A1029-A1039 (2014).
[51] P. C. Hung and J. Y. Tsao, “Maximum White Luminous Efficacy of Radiation Versus Color Rendering Index and Color Temperature: Exact Results and a Useful Analytic Expression,” J. Disp. Technol. 9, 405-412 (2013).
[52] S. Zhang, Z. D. Hao, L. L. Zhang, G. H. Pan, H. J. Wu, X. Zhang, Y. S. Luo, L. G. Zhang, H. F. Zhao, and J. H. Zhang, “Efficient blue-emitting phosphor SrLu2O4:Ce3+ with high thermal stability for near ultraviolet (~400 nm) LED-chip based white LEDs,” Sci. Rep. 8, 10463 (2018).
[53] J. Wang, C. C. Tsai, W. C. Cheng, M. H. Chen, C. H. Chung, and W. H. Cheng, “High thermal stability of phosphor-converted white light-emitting diodes employing Ce:YAG-doped glass,” IEEE J. Select. Top. Quantum Electron. 17, 741-746 (2011).
[54] J. L. Tang, F. Li, G. L. Yang, Y. Ge, Z. H. Li, Z. G. Xia, H. B. Shen, and H. Z. Zhong, “Reducing the chromaticity shifts of light-emitting diodes using gradient-alloyed CdxZn1-x SeyS1-y@ZnS core shell quantum dots with enhanced high-temperature photoluminescence,” Adv. Opt. Mater. 7, 1801687 (2019).
[55] T. H. Yang, H. Y. Huang, C. C. Sun, B. Glorieux, X. H. Lee, Y. W. Yu, and T. Y. Chung, “Non-contact and instant detection of phosphor temperature in phosphor-converted white LEDs,” Sci. Rep. 8, 296 (2018).
[56] B. F. Fan, H. Wu, Y. Zhao, Y. L. Xian, and G. Wang, “Study of phosphor thermal-isolated packaging technologies for high-power white light-emitting diodes,” IEEE Photon. Technol. Lett. 19, 1121-1123 (2007).
[57] J. J. Zhang, B. Xie, X. J. Yu, X. B. Luo, T. Zhang, S. S. Liu, Z. H. Yu, L. Liu, and X. Jin, “Blue light hazard performance comparison of phosphor-converted LED sources with red quantum dots and red phosphor,” J. Appl. Phys. 122, 043103 (2017).
[58] J. J. Zhang, W. H. Guo, B. Xie, X. J. Yu, X. B. Luo, T. Zhang, Z. H. Yu, H. Wang, and X. Jin, “Blue light hazard optimization for white light-emitting diode sources with high luminous efficacy of radiation and high color rendering index,” Opt. Laser Technol. 94, 193-198 (2017).
[59] K. Burkhart and J. R. Phelps, “Amber lenses to block blue light and improve sleep: a randomized trial,” Chronobiol. Int. 26, 1602-1612 (2009).
[60] W. Tang, J. G. Liu, and C. Shen, “Blue light hazard optimization for high quality white LEDs,” IEEE Photonics J. 10, 1-10 (2018).
[61] Z. Liu, S. Liu, K. Wang, and X. Luo, “Optical analysis of color distribution in white LEDs with various packaging methods,” IEEE Photon. Technol. Lett. 20, 2027–2029 (2008).
[62] C. Sommer, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, G. Leising, and F. P. Wenzl, “A detailed study on the requirement for angular homogeneity of phosphor converted high power white LED light sources,” Opt. Mater. 31, 837–848 (2009).
[63] K. Wang, D. Wu, F. Chen, Z. Y. Liu, X. B. Luo, and S. Liu, “Angular color uniformity enhancement of white light-emitting diodes integrated with freeform lenses,” Opt. Lett. 35, 1860–1862 (2010).
[64] Y. Shuai, Y. Z. He, N. T. Tran, and F. G. Shi, “Angular CCT uniformity of phosphor converted white LEDs: effects of phosphor materials and packaging structures,” IEEE Photon. Technol. Lett. 23, 137–139 (2011).
[65] H. T. Huang, C. C. Tsai, and Y. P. Huang, “Conformal phosphor coating using pulsed spray to reduce color deviation of white LEDs,” Opt. Express 18, A201–A206 (2010).
[66] T. P. L. Nguyen, and D. Q. A. Nguyen, “The effects of ZnO particles on the color homogeneity of phosphor-converted high-power white led light sources” Int. J. Electr. Comput. Eng. 10, 5155-5161 (2020).
[67] H. C. Chen, K. J. Chen, C. H. Wang, H. H. Tsai, C. C. Lin, M. H. Shih, and H. C. Kuo, “Improvement of Angular-dependent CCT Uniformity by ZrO2 Nano-particles in Remote Phosphor White LEDs,” Proc. of Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optica Publishing Group, 2012), paper CW1L.4.
[68] M. Wu, L. Liu, and G. Wang, “White LED devices with nearly uniform space-color distribution through nanoparticle usage,” Proc. of 14th International Conference on Electronic Materials and Packaging (EMAP), 1-4 (2012).
[69] B. Wu, X. Luo, H. Zheng, and S. Liu, “Effect of gold wire bonding process on angular correlated color temperature uniformity of white light-emitting diode,” Opt. Express 19, 24116 (2011).
[70] S. Cheng, T. Ye, H. Mao, Y. Wu, W. Jiang, C. Ban, Y. Yin, J. Liu, F. Xiu, and W. Huang “Electrostatically assembled carbon dots/boron nitride nanosheet hybrid nanostructures for thermal quenching-resistant white phosphors,” Nanoscale 12, 524 (2020).
[71] T. Abitbol, A. Rivkin, Y. Cao, Y. Nevo, E. Abraham, B. S. Tal, S. Lapidot, and O. Shoseyov, “Nanocellulose, a tiny fiber with huge applications,” Current Opinion in Biotechnology 39, 76-88 (2016).
[72] D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, and A. Dorris, “Nanocelluloses: a new family of nature-based materials,” Angew. Chem. Int. Ed. Engl. 50, 5438–5466 (2011).
[73] P. Tingaut, T. Zimmermann, and G. Sèbe, “Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials,” J. Mater. Chem. 22, 20105-20111 (2012).
[74] N. Lin, J. Huang, and A. Dufresne, “Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review,” Nanoscale 4, 3274-3294 (2012).
[75] K. Uetani and K. Hatori, “Thermal conductivity analysis and applications of nanocellulose materials,” Sci. Technol. Adv. Mater. 18, 877-892 (2017).
[76] Y. Shimazaki, Y. Miyazaki, Y. Takezawa, M. Nogi, K. Abe, S. Ifuku, and H. Yano, “Excellent Thermal Conductivity of Transparent Cellulose Nanofiber/Epoxy Resin Nanocomposites,” Biomacromolecules 8, 2976-2978 (2007).
[77] S. Kalia, A. Dufresne, B. Mathew Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-Based Bio- and Nanocomposites: A Review,” Int. J. Polym. Sci. 2011, 35 (2011).
[78] B. Dhuiège, G. Pecastaings, and G. Sèbe, “A Sustainable approach for the Direct Functionalization of Cellulose Nanocrystals Dispersed in Water by Transesterification of Vinyl Acetate,” ACS Sustain. Chem. Eng. 7, 187-196 (2019).
[79] A. Werner, V. Schmitt, G. Sèbe, and V.Héroguez, “Convenient synthesis of hybrid polymer materials by AGET-ATRP polymerization of Pickering emulsions stabilized by cellulose nanocrystals grafted with reactive moieties,” Biomacromolecules 20, 490-501 (2019).
[80] G. Sèbe, A. Simon, B. Dhuiège, and C. Faure, “Cu2+-loaded cellulose micro-beads applied to the direct patterning of metallic surfaces using a fast and convenient process,” Carbohydr. Polym. 207, 492-50 (2019).
[81] Z. Zhang, K. C. Tam, X. Wang, and G. Sèbe, “A comparative study on grafting polymers from cellulose nanocrystals via SI-ATRP and SI-ARGET ATRP,” Carbohydr. Polym. 205, 322-329 (2019).
[82] D. Enescu, C. Gardrat, H. Cramail, C. Lecoz, G. Sèbe, and V. Coma, “Bio-inspired films based on chitosan, nanoclays and cellulose nanocrystals: structuring and properties improvements by using water-evaporation-induced self-assembly,” Cellulose 26, 2389-2401 (2019).
[83] G. Chantereau, N. Brown, M.-A. Dourges, C. S. R. Freire, A. J. D. Silvestre, G. Sebe, and V. Coma, “Silylation of bacterial cellulose to design membranes with intrinsic anti-bacterial properties,” Carbohydr. Polym. 220, 71-78 (2019).
[84] G. Chantereau, M. Sharma, A. Abednejad, C. Vilela, E. M. Costa, M. Veiga, F. Antunes, M. M. Pintado, G. Sèbe, V. Coma, M. G. Freire, C.S.R. Freire, and A. J. D. Silvestre, “Bacterial nanocellulose membranes loaded with vitamin B-based ionic liquids for dermal care applications,” Journal of Molecular Liquids 302, 112547 (2020).
[85] Q. Xu, L. Meng, and X. Wang, “Nanocrystal-filled polymer for improving angular color uniformity of phosphor-converted white LEDs,” Appl. Opt. 58, 7649-7654 (2019).
[86] F. I. Chowdhury, Q. Xu, and X. Wang “Improving the Light Quality of White Light-Emitting Diodes Using Cellulose Nanocrystal-Filled Phosphors,” Adv. Photonics Res. 2, 2100006 (2021).
[87] Y.C. Lin, M. Bettinelli, S. K. Sharma, B. Redlich, A. Speghini, and M. Karlsson, “Unraveling the impact of different thermal quenching routes on the luminescence efficiency of the Y3Al5O12:Ce3+ phosphor for white light emitting diodes,” J. Mater. Chem. C. 8, 14015-14027 (2020).
[88] J. L. Davis, K.-C. Mills, G. Bobashev, K.-J. Rountree, M. Lamvik, R. Yaga, and C. Johnson, “Understanding chromaticity shifts in LED devices through analytical models,” Microelectron. Reliab. 84, 149-156 (2018).
[89] P. Singh, and C. M. Tan, “Degradation Physics of High-Power LEDs in Outdoor Environment and the Role of Phosphor in the degradation process,” Sci. Rep. 6, 24052 (2016).
[90] Y. Wang, B. Tang, Y. Gao, X. Wu, J. Chen, L. Shan, K. Sun, Y. Zhao, K. Yang, J. Yu, and W. Li, “Epoxy Composites with High Thermal Conductivity by Constructing Three-Dimensional Carbon Fiber/Carbon/Nickel Networks Using an Electroplating Method,” ACS Omega 6, 19238-19251, 2021.
[91] Z. Liu, Y. Chen, W. Dai, Y. Wu, M. Wang, X. Hou, H. Li, N. Jiang, C. T. Lin, and J. Yu, “Anisotropic thermal conductive properties of cigarette filter-templated graphene/epoxy composites,” RSC Adv. 8, 1065, 2018.
[92] Z. Zheng, J. Dai, Y. Zhang, H. Wang, A. Wang, M. Shan, H. Long, Y. Peng, H. Sun, and C. Chen, “Enhanced Heat Dissipation of Phosphor Film in WLEDs by AlN-Coated Sapphire Plate,” IEEE Transactions on Electron Devices 67, 3180-3185 (2020).
[93] L. Guo, Z. Zhang, R. Kang, Y. Chen, X. Hou, Y. Wu, M. Wang, B. Wang, J. Cui, N. Jiang, C. Lin, and J. Yu, “Enhanced thermal conductivity of epoxy composites filled with tetrapod-shaped ZnO,” RSC adv. 8, 12337-12343 (2018).
[94] W. Hao, L. Li, Y. Chen, M. Li, H. Fu, X. Hou, X. Wu, C. Lin, N. Jiang, and J. Yu, “Efficient thermal transport highway construction within epoxy matrix via hybrid carbon fibers and alumina particles,” ACS Omega 5, 1170-1177 (2020).
[95] C. Peng, G. Zhang, R. Sun, and C. P. Wong, “Investigation of the optical properties of ZnO/epoxy resin nanocomposite: Application in the LED,” Proc. of 13th International Conference on Electronic Packaging Technology & High Density Packaging, 376-379 (2012).
[96] D. Shen, Z. Zhan, Z. Liu, Y. Cao, L. Zhou, Y. Liu, W. Dai, K. Nishimura, C. Li, C. T. Lin, N. Jiang, and J. Yu, “Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires,” Sci. Rep. 7, 2606 (2017).
[97] J. Ren, Q. Li, L. Yan, L. Jia, X. Huang, L. Zhao, Q. Ran, and M. Fu, “Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements,” Compos. Sci. Technol. 199, 108304 (2020).
[98] G. Karolina, A. Rybak, C. Kapusta, R. Sekula, and A. Siwek, “Enhanced thermal conductivity of epoxy–matrix compo-sites with hybrid fillers,” Polym. Adv. Technol. 26, 26-31 (2015).
[99] Y. Rong, F. Su, L. Zhang, and C. Li, “Highly enhanced thermal conductivity of epoxy composites by constructing dense thermal conductive network with combination of alumina and carbon nanotubes,” Compos. Part A Appl. Sci. Manuf. 125, 105496 (2019).
[100] R. Kang, Z. Zhang, L. Guo, J. Cui, Y. Chen, X. Hou, B. Wang, C.T. Lin, N. Jiang, and J. Yu, “Enhanced thermal conductivity of epoxy composites filled with 2D transition metal carbides (MXenes) with ultralow loading,” Sci. Rep. 9, 1-14 (2019).
[101] J. Hu, Y. Huang, X. Zeng, Q. Li, L. Ren, R. Sun, J. Xu, and C. Wong, “Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN,” Compos. Sci. Technol. 160, 127-137 (2018).
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2022-9-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明