參考文獻 |
REFERENCES
[1] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274-1278 (2005).
[2] N. Narendran and Y. Gu, "Life of LED-Based White Light Sources," J. Display Technol. 1, 167-171 (2005).
[3] Y. Y. Chang, Z. Y. Ting, C. Y. Chen, T. H. Yang, and C. C. Sun, "Design of Optical Module With High Stability, High Angular Color Uniformity, and Adjustable Light Distribution for Standard Lamps," J. Display Technol. 10, 223-227 (2014)
[4] C. C. Sun, C. Y. Chen, C. C. Chen, C. Y. Chiu, Y. N. Peng, Y. H. Wang, T. H. Yang, T. Y. Chung, and Cheng-Yang Chung, "High uniformity in angular correlated-color-temperature distribution of white LEDs from 2800K to 6500K," Opt. Express 20, 6622-6630 (2012).
[5] C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Sol. State Light. 1, 19 (2014).
[6] S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schuberta, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes”, J. Appl. Phys. 97, 054506 (2005).
[7] Y. F. Su , S. Y. Yang , T. Y. Hung , C. C. Lee , and K. N. Chiang , “Light degradation test and design of thermal performance for high-power light-emitting diodes”, Microelectron. Reliab. 52, 794–803 (2012).
[8] J. L. Davis, K. C. Mills, G. Bobashev, K. J. Rountree, M. Lamvik, R. Yaga, and C. Johnson, “Understanding chromaticity shifts in LED devices through analytical models,” Microelectron. Reliab. 84, 149–156 (2018).
[9] M. Yazdan Mehr, A. Bahrami, W. D. van Driel, X. J. Fan, J. L. Davis, and G. Q. Zhang, “Degradation of optical materials in solid-state lighting systems,” Int. Mater. Rev. 65, 102-128 (2020).
[10] N. Narendran, Y. Gu, L. Jayasinghe, J. P. Freyssinier, and Y. Zhu, “Long-term performance of white LEDs and systems,” Proc. of First International Conference on White LEDs and Solid State lighting,174-179 (2007).
[11] P. Singh and C. M. Tan, “Degradation physics of high-power LEDs in outdoor environment and the role of phosphor in the degradation process,” Sci. Rep. 6, 24052 (2016).
[12] G. H. Ryu, B. Ma, and H. Y. Ryu, “Temperature dependence of the color rendering index of a phosphor-conversion white light-emitting diode,” AIP Adv. 9, 015009 (2019).
[13] W. Nemitz, P. Fulmek, J. Nicolics, F. Reil & F. P. Wenzl, “On the determination of the temperature distribution within the color conversion elements of phosphor converted LEDs,” Sci. Rep. 7, 9964 (2017).
[14] G. H. Ryu and H. Y. Ryu, “Analysis of the Temperature Dependence of Phosphor Conversion Efficiency in White Light-Emitting Diodes,” J. Opt. Soc. Korea 19, 311-316 (2015).
[15] G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, “Efficiency droop in InGaN/GaN blue lightemitting diodes: Physical mechanisms and remedies,” J. Appl. Phys. 114, 071101 (2013).
[16] B. J. Shih, S. C. Chiou, Y. H. Hsieh, C. C. Sun, T. H. Yang, S. Y. Chen, and T. Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23, 33861 (2015).
[17] R. Karileck, C.C. Sun, G. Zissis, and R. Ma, Handbook of Advanced Lighting Technology (Springer International Publishing Switzerland, 2015).
[18] C. Martinsons and G. Zissis, ‘Potential health issues of solid state lighting,’ IEA 4E final report. (2014).
[19] S. Point and J. Lambrozo, “Some evidences that white LEDs are toxic for human at domestic radiance?,” Radioprotection 52, 297-299 (2017).
[20] S. Point, “Blue Light Hazard: are exposure limit values protective enough for newborn infants?,” Radioprotection 53, 219-224 (2018).
[21] IEC 62471:2006 Photobiological Safety of Lamps and Lamp Systems.
[22] M. Y. Mehr, W. D. V. Driel, and G. Q. Zhang, “Progress in understanding Color Maintenance in Solid-State Lighting Systems,” Engineering 1, 170-178 (2015).
[23] S. Zhang, Z. Hao, L. Zhang, G. H. Pan, H. Wu, X. Zhang, Y. Luo, L. Zhang, H. Zhao, and J. Zhang, “Efficient Blue-emitting Phosphor SrLu2O4:Ce3+ with High Thermal Stability for Near Ultraviolet (~400 nm) LED-Chip based White LEDs,” Sci. Rep. 8, 10463 (2018).
[24] J. Wang, C. -C. Tsai, W. -C. Cheng, M. -H. Chen, C. -H. Chung, and W. -H. Cheng “High Thermal Stability of Phosphor-Converted White Light-Emitting Diodes Employing Ce:YAG-Doped Glass,” IEEE J. Sel. Top. Quantum Electron. 17, 741-746 (2011).
[25] J. Tang, F. Li, G. Yang, Y. Ge, Z. Li, Z. Xia, H. Shen, and H. Z. Zhong, “Reducing the Chromaticity Shifts of Light-Emitting Diodes Using Gradient-Alloyed CdxZn1-xSeyS1-y@ZnS Core Shell Quantum Dots with Enhanced High-Temperature Photoluminescence,” Adv. Optical Mater. 7, 1801687 (2019).
[26] M. Zhao, Z. Xia, X. Huang, L. Ning, R. Gautier, M. S. Molokeev, Y. Zhou, Y. C. Chuang, Q. Zhang, Q. Liu, and K. R. Poeppelmeier, “Li substituent tuning of LED phosphors with enhanced efficiency, tunable photoluminescence, and improved thermal stability”, Sci. Adv., 5, eaav0363 (2019).
[27] T. H. Yang, S. M. Wu, C. C. Sun, B. Glorieux, C. Y. Chen, Y. Y. Chang, X. H. Lee, Y. W. Yu, T. Y. Chung, and K. Y. Lai, "Stabilizing CCT in pcW-LEDs by self-compensation between excitation efficiency and conversion efficiency of phosphors," Opt. Express 25, 29287-29295 (2017).
[28] B. Fan, H. Wu, Y. Zhao, Y. Xian, and G. Wang, “Study of Phosphor Thermal-Isolated Packaging Technologies for High-Power White Light-Emitting Diodes,” IEEE Photon. Technol. Lett. 19, 1121-1123 (2007).
[29] N. Holonyak, and S.F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions. Appl. Phys. Lett. 1, 82–83 (1962).
[30] S. Nakamura, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys. 30, 1705–1707 (1991).
[31] https://en.wikipedia.org/wiki/Phase-out_of_incandescent_light_bulbs
[32] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353 (1986)
[33] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. 28, 2112-2114 (1989).
[34] S. Nakamura, M. Senoh, and T. Mukai, “Highly P-typed Mg-doped GaN films grown with GaN buffer layers,” Jpn. J. Appl. Phys. 30, 1708-1711 (1991).
[35] S. Nakamura, T. Mukai, M. Senoh, and N. Isawa, “Thermal annealing effects on P-type Mg-doped GaN films,” Jpn. J. Appl. Phys. 31, L139–L142 (1992).
[36] S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes,” Appl. Phys. Lett. 62, 2390-2392 (1993).
[37] S. Nakamura, S. Pearton, and G. Fasol, The blue laser diode (Springer, Berlin, 2000)
[38] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149-154 (1967).
[39] WLED YAG phosphors (CN-YY550L), http://www.china-glaze.com.tw/Downloads/CN-YY550L.pdf.
[40] R. Kasuya; T. Isobe; H. Kuma, and J. Katano, “Photoluminescence Enhancement of PEG-Modified YAG:Ce3+ Nanocrystal Phosphor Prepared by Glycothermal Method,” J. Phys. Chem. B. 109, 22126-22130 (2005).
[41] R.J. Xie, Q. L. Yuan, H. Naoto, and Y. Hajime, Nitride phosphors and solid-state lighting (Taylor & Francis, Boca Raton, 2011).
[42] C. C. Sun, and T. X. Lee, Optical Design for LED Solid State Lighting A guide ( IOP Publishing, 2022).
[43] P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting Conversion Phosphors for White Light-Emitting Diodes,” J. Electrochem. Soc. 158, R37-R54 (2011).
[44] S.P. Ying, H. K. Fu, W. F. Tang, and R. C. Hong, “The Study of Thermal Resistance Deviation of High-Power LEDs,” IEEE Trans. Electron. Devices. 61, 2843-2848 (2014).
[45] K. Górecki, and P. Ptak, “Compact Modelling of Electrical, Optical and Thermal Properties of Multi-Colour Power LEDs Operating on a Common PCB,” Energies 14, 1286 (2021).
[46] I. E. Titkov, S. Y. Karpov, A. Yadav, V. L. Zerova, M. Zulonas, B. Galler, M. Strassburg, I. Pietzonka, H. J. Lugauer, and E. U. Rafailov, “Temperature-Dependent Internal Quantum Efficiency of Blue High-Brightness LightEmitting Diodes,” IEEE J. Quantum Electron. 50, 911 (2014).
[47] A. Vaskuri, P. Kärhä, H. Baumgartner, O. Kantamaa,
T. Pulli, T. Poikonen, and E. Ikonen, “Relationships between junction temperature, electroluminescence spectrum and ageing of light-emitting diodes,” Metrologia 55, S86–S95 (2018).
[48] H. Y. Ryu, G. H. Ryu, C. Onwukaeme, and B. Ma, “Temperature dependence of the Auger recombination coefficient in InGaN/GaN multiple-quantum-well light-emitting diodes,” Opt. Express 28, 27459 (2020).
[49] W. Liu, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, J. J. Zhu, M. Shi, D. M. Zhao, X. Li, J. P. Liu, S. M. Zhang, H. Wang, H. Yang, Y. T. Zhang, and G. T. Du, “Temperature dependence of photoluminescence spectra for green light emission from InGaN/GaN multiple wells,” Opt. Express 23, 15935 (2015).
[50] Y. Lin, Z. Deng, Z. Guo, Z. Liu, H. Lan, Y. Lu, and Y. Cao, “Study on the correlations between color rendering indices and the spectral power distribution,” Opt. Express 22, A1029-A1039 (2014).
[51] P. C. Hung and J. Y. Tsao, “Maximum White Luminous Efficacy of Radiation Versus Color Rendering Index and Color Temperature: Exact Results and a Useful Analytic Expression,” J. Disp. Technol. 9, 405-412 (2013).
[52] S. Zhang, Z. D. Hao, L. L. Zhang, G. H. Pan, H. J. Wu, X. Zhang, Y. S. Luo, L. G. Zhang, H. F. Zhao, and J. H. Zhang, “Efficient blue-emitting phosphor SrLu2O4:Ce3+ with high thermal stability for near ultraviolet (~400 nm) LED-chip based white LEDs,” Sci. Rep. 8, 10463 (2018).
[53] J. Wang, C. C. Tsai, W. C. Cheng, M. H. Chen, C. H. Chung, and W. H. Cheng, “High thermal stability of phosphor-converted white light-emitting diodes employing Ce:YAG-doped glass,” IEEE J. Select. Top. Quantum Electron. 17, 741-746 (2011).
[54] J. L. Tang, F. Li, G. L. Yang, Y. Ge, Z. H. Li, Z. G. Xia, H. B. Shen, and H. Z. Zhong, “Reducing the chromaticity shifts of light-emitting diodes using gradient-alloyed CdxZn1-x SeyS1-y@ZnS core shell quantum dots with enhanced high-temperature photoluminescence,” Adv. Opt. Mater. 7, 1801687 (2019).
[55] T. H. Yang, H. Y. Huang, C. C. Sun, B. Glorieux, X. H. Lee, Y. W. Yu, and T. Y. Chung, “Non-contact and instant detection of phosphor temperature in phosphor-converted white LEDs,” Sci. Rep. 8, 296 (2018).
[56] B. F. Fan, H. Wu, Y. Zhao, Y. L. Xian, and G. Wang, “Study of phosphor thermal-isolated packaging technologies for high-power white light-emitting diodes,” IEEE Photon. Technol. Lett. 19, 1121-1123 (2007).
[57] J. J. Zhang, B. Xie, X. J. Yu, X. B. Luo, T. Zhang, S. S. Liu, Z. H. Yu, L. Liu, and X. Jin, “Blue light hazard performance comparison of phosphor-converted LED sources with red quantum dots and red phosphor,” J. Appl. Phys. 122, 043103 (2017).
[58] J. J. Zhang, W. H. Guo, B. Xie, X. J. Yu, X. B. Luo, T. Zhang, Z. H. Yu, H. Wang, and X. Jin, “Blue light hazard optimization for white light-emitting diode sources with high luminous efficacy of radiation and high color rendering index,” Opt. Laser Technol. 94, 193-198 (2017).
[59] K. Burkhart and J. R. Phelps, “Amber lenses to block blue light and improve sleep: a randomized trial,” Chronobiol. Int. 26, 1602-1612 (2009).
[60] W. Tang, J. G. Liu, and C. Shen, “Blue light hazard optimization for high quality white LEDs,” IEEE Photonics J. 10, 1-10 (2018).
[61] Z. Liu, S. Liu, K. Wang, and X. Luo, “Optical analysis of color distribution in white LEDs with various packaging methods,” IEEE Photon. Technol. Lett. 20, 2027–2029 (2008).
[62] C. Sommer, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, G. Leising, and F. P. Wenzl, “A detailed study on the requirement for angular homogeneity of phosphor converted high power white LED light sources,” Opt. Mater. 31, 837–848 (2009).
[63] K. Wang, D. Wu, F. Chen, Z. Y. Liu, X. B. Luo, and S. Liu, “Angular color uniformity enhancement of white light-emitting diodes integrated with freeform lenses,” Opt. Lett. 35, 1860–1862 (2010).
[64] Y. Shuai, Y. Z. He, N. T. Tran, and F. G. Shi, “Angular CCT uniformity of phosphor converted white LEDs: effects of phosphor materials and packaging structures,” IEEE Photon. Technol. Lett. 23, 137–139 (2011).
[65] H. T. Huang, C. C. Tsai, and Y. P. Huang, “Conformal phosphor coating using pulsed spray to reduce color deviation of white LEDs,” Opt. Express 18, A201–A206 (2010).
[66] T. P. L. Nguyen, and D. Q. A. Nguyen, “The effects of ZnO particles on the color homogeneity of phosphor-converted high-power white led light sources” Int. J. Electr. Comput. Eng. 10, 5155-5161 (2020).
[67] H. C. Chen, K. J. Chen, C. H. Wang, H. H. Tsai, C. C. Lin, M. H. Shih, and H. C. Kuo, “Improvement of Angular-dependent CCT Uniformity by ZrO2 Nano-particles in Remote Phosphor White LEDs,” Proc. of Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optica Publishing Group, 2012), paper CW1L.4.
[68] M. Wu, L. Liu, and G. Wang, “White LED devices with nearly uniform space-color distribution through nanoparticle usage,” Proc. of 14th International Conference on Electronic Materials and Packaging (EMAP), 1-4 (2012).
[69] B. Wu, X. Luo, H. Zheng, and S. Liu, “Effect of gold wire bonding process on angular correlated color temperature uniformity of white light-emitting diode,” Opt. Express 19, 24116 (2011).
[70] S. Cheng, T. Ye, H. Mao, Y. Wu, W. Jiang, C. Ban, Y. Yin, J. Liu, F. Xiu, and W. Huang “Electrostatically assembled carbon dots/boron nitride nanosheet hybrid nanostructures for thermal quenching-resistant white phosphors,” Nanoscale 12, 524 (2020).
[71] T. Abitbol, A. Rivkin, Y. Cao, Y. Nevo, E. Abraham, B. S. Tal, S. Lapidot, and O. Shoseyov, “Nanocellulose, a tiny fiber with huge applications,” Current Opinion in Biotechnology 39, 76-88 (2016).
[72] D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, and A. Dorris, “Nanocelluloses: a new family of nature-based materials,” Angew. Chem. Int. Ed. Engl. 50, 5438–5466 (2011).
[73] P. Tingaut, T. Zimmermann, and G. Sèbe, “Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials,” J. Mater. Chem. 22, 20105-20111 (2012).
[74] N. Lin, J. Huang, and A. Dufresne, “Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review,” Nanoscale 4, 3274-3294 (2012).
[75] K. Uetani and K. Hatori, “Thermal conductivity analysis and applications of nanocellulose materials,” Sci. Technol. Adv. Mater. 18, 877-892 (2017).
[76] Y. Shimazaki, Y. Miyazaki, Y. Takezawa, M. Nogi, K. Abe, S. Ifuku, and H. Yano, “Excellent Thermal Conductivity of Transparent Cellulose Nanofiber/Epoxy Resin Nanocomposites,” Biomacromolecules 8, 2976-2978 (2007).
[77] S. Kalia, A. Dufresne, B. Mathew Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-Based Bio- and Nanocomposites: A Review,” Int. J. Polym. Sci. 2011, 35 (2011).
[78] B. Dhuiège, G. Pecastaings, and G. Sèbe, “A Sustainable approach for the Direct Functionalization of Cellulose Nanocrystals Dispersed in Water by Transesterification of Vinyl Acetate,” ACS Sustain. Chem. Eng. 7, 187-196 (2019).
[79] A. Werner, V. Schmitt, G. Sèbe, and V.Héroguez, “Convenient synthesis of hybrid polymer materials by AGET-ATRP polymerization of Pickering emulsions stabilized by cellulose nanocrystals grafted with reactive moieties,” Biomacromolecules 20, 490-501 (2019).
[80] G. Sèbe, A. Simon, B. Dhuiège, and C. Faure, “Cu2+-loaded cellulose micro-beads applied to the direct patterning of metallic surfaces using a fast and convenient process,” Carbohydr. Polym. 207, 492-50 (2019).
[81] Z. Zhang, K. C. Tam, X. Wang, and G. Sèbe, “A comparative study on grafting polymers from cellulose nanocrystals via SI-ATRP and SI-ARGET ATRP,” Carbohydr. Polym. 205, 322-329 (2019).
[82] D. Enescu, C. Gardrat, H. Cramail, C. Lecoz, G. Sèbe, and V. Coma, “Bio-inspired films based on chitosan, nanoclays and cellulose nanocrystals: structuring and properties improvements by using water-evaporation-induced self-assembly,” Cellulose 26, 2389-2401 (2019).
[83] G. Chantereau, N. Brown, M.-A. Dourges, C. S. R. Freire, A. J. D. Silvestre, G. Sebe, and V. Coma, “Silylation of bacterial cellulose to design membranes with intrinsic anti-bacterial properties,” Carbohydr. Polym. 220, 71-78 (2019).
[84] G. Chantereau, M. Sharma, A. Abednejad, C. Vilela, E. M. Costa, M. Veiga, F. Antunes, M. M. Pintado, G. Sèbe, V. Coma, M. G. Freire, C.S.R. Freire, and A. J. D. Silvestre, “Bacterial nanocellulose membranes loaded with vitamin B-based ionic liquids for dermal care applications,” Journal of Molecular Liquids 302, 112547 (2020).
[85] Q. Xu, L. Meng, and X. Wang, “Nanocrystal-filled polymer for improving angular color uniformity of phosphor-converted white LEDs,” Appl. Opt. 58, 7649-7654 (2019).
[86] F. I. Chowdhury, Q. Xu, and X. Wang “Improving the Light Quality of White Light-Emitting Diodes Using Cellulose Nanocrystal-Filled Phosphors,” Adv. Photonics Res. 2, 2100006 (2021).
[87] Y.C. Lin, M. Bettinelli, S. K. Sharma, B. Redlich, A. Speghini, and M. Karlsson, “Unraveling the impact of different thermal quenching routes on the luminescence efficiency of the Y3Al5O12:Ce3+ phosphor for white light emitting diodes,” J. Mater. Chem. C. 8, 14015-14027 (2020).
[88] J. L. Davis, K.-C. Mills, G. Bobashev, K.-J. Rountree, M. Lamvik, R. Yaga, and C. Johnson, “Understanding chromaticity shifts in LED devices through analytical models,” Microelectron. Reliab. 84, 149-156 (2018).
[89] P. Singh, and C. M. Tan, “Degradation Physics of High-Power LEDs in Outdoor Environment and the Role of Phosphor in the degradation process,” Sci. Rep. 6, 24052 (2016).
[90] Y. Wang, B. Tang, Y. Gao, X. Wu, J. Chen, L. Shan, K. Sun, Y. Zhao, K. Yang, J. Yu, and W. Li, “Epoxy Composites with High Thermal Conductivity by Constructing Three-Dimensional Carbon Fiber/Carbon/Nickel Networks Using an Electroplating Method,” ACS Omega 6, 19238-19251, 2021.
[91] Z. Liu, Y. Chen, W. Dai, Y. Wu, M. Wang, X. Hou, H. Li, N. Jiang, C. T. Lin, and J. Yu, “Anisotropic thermal conductive properties of cigarette filter-templated graphene/epoxy composites,” RSC Adv. 8, 1065, 2018.
[92] Z. Zheng, J. Dai, Y. Zhang, H. Wang, A. Wang, M. Shan, H. Long, Y. Peng, H. Sun, and C. Chen, “Enhanced Heat Dissipation of Phosphor Film in WLEDs by AlN-Coated Sapphire Plate,” IEEE Transactions on Electron Devices 67, 3180-3185 (2020).
[93] L. Guo, Z. Zhang, R. Kang, Y. Chen, X. Hou, Y. Wu, M. Wang, B. Wang, J. Cui, N. Jiang, C. Lin, and J. Yu, “Enhanced thermal conductivity of epoxy composites filled with tetrapod-shaped ZnO,” RSC adv. 8, 12337-12343 (2018).
[94] W. Hao, L. Li, Y. Chen, M. Li, H. Fu, X. Hou, X. Wu, C. Lin, N. Jiang, and J. Yu, “Efficient thermal transport highway construction within epoxy matrix via hybrid carbon fibers and alumina particles,” ACS Omega 5, 1170-1177 (2020).
[95] C. Peng, G. Zhang, R. Sun, and C. P. Wong, “Investigation of the optical properties of ZnO/epoxy resin nanocomposite: Application in the LED,” Proc. of 13th International Conference on Electronic Packaging Technology & High Density Packaging, 376-379 (2012).
[96] D. Shen, Z. Zhan, Z. Liu, Y. Cao, L. Zhou, Y. Liu, W. Dai, K. Nishimura, C. Li, C. T. Lin, N. Jiang, and J. Yu, “Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires,” Sci. Rep. 7, 2606 (2017).
[97] J. Ren, Q. Li, L. Yan, L. Jia, X. Huang, L. Zhao, Q. Ran, and M. Fu, “Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements,” Compos. Sci. Technol. 199, 108304 (2020).
[98] G. Karolina, A. Rybak, C. Kapusta, R. Sekula, and A. Siwek, “Enhanced thermal conductivity of epoxy–matrix compo-sites with hybrid fillers,” Polym. Adv. Technol. 26, 26-31 (2015).
[99] Y. Rong, F. Su, L. Zhang, and C. Li, “Highly enhanced thermal conductivity of epoxy composites by constructing dense thermal conductive network with combination of alumina and carbon nanotubes,” Compos. Part A Appl. Sci. Manuf. 125, 105496 (2019).
[100] R. Kang, Z. Zhang, L. Guo, J. Cui, Y. Chen, X. Hou, B. Wang, C.T. Lin, N. Jiang, and J. Yu, “Enhanced thermal conductivity of epoxy composites filled with 2D transition metal carbides (MXenes) with ultralow loading,” Sci. Rep. 9, 1-14 (2019).
[101] J. Hu, Y. Huang, X. Zeng, Q. Li, L. Ren, R. Sun, J. Xu, and C. Wong, “Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN,” Compos. Sci. Technol. 160, 127-137 (2018). |