博碩士論文 109226031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:18.118.154.250
姓名 黃泓彰(Hong-Chang Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 雙折射薄膜索爾克濾波器研究
(Birefringent Thin Film Šolc Filters)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 禁止頻帶材料的光學與聲波特性研究★ 漸變式光子晶體透鏡研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光在介面傳遞時,會被分成穿透與反射兩個傳播方向,可根據界面兩側的折射率來計算這兩道光的強度。當光在多層膜的晶體結構傳遞時,這之中包含了無數介面,使其不斷地在結構穿透與反射。因此產生出無限多種光的傳遞路徑,而每一條路徑便是一種結果,將所有結果計算得出後總和,便是此多層結構的光學特性結果。
本研究透過矩陣理論(Matrix Theory),來計算多層膜晶體的光學特性。首先由單層結構開始,根據它的折射率以及厚度兩項參數,列出波傳遞矩陣(Wave-transfer matrix),將數個單層結構組合成多層膜結構。因為矩陣理論所具有的累乘性,將所有矩陣乘積後,便可得出多層膜結構的波傳遞矩陣。
透過上述方法,我們可計算出任何複雜結構的波傳遞矩陣,或是將不同的波傳遞矩陣組合起來,設計出寬頻抗反射膜、全向反射膜、寬頻濾波器等,具備特殊光學特性的結構。
本研究最終證實波傳遞矩陣,可應用於雙折射多層結構的光學計算上。並且設計出具有濾波和慢光效果的”玻璃夾層式索爾克結構”,該結構的群折射率和慢光程度,和總層數呈正相關。意味著不受限於材料,使用任意折射率的材料,皆可藉由結構設計來控制上述特性。
摘要(英) When light is transmitted through the interface, it will be divided into two lights, “transmitted light” and “reflected light” respectively. The intensities of these two lights is based on the refractive index on the both sides of interface. When light is transmitted through the multilayer structure which contains countless interfaces. It makes continuously transmission and reflection in the structure. Ultimately, an infinite variety of light propagation paths are generated, and each path is one of a result. After summing all the results, the optical properties of the multilayer structure can be known.
In this study, the optical properties of the multilayer structure were calculated by Matrix Theory. First calculate the single-layer structure, and list the Wave-transfer matrix base on the refractive index and thickness of the structure. Combining several single-layer structures into multilayer structure. Because of the “multiplicative” property of the Matrix Theory, after multiplying all the single-layer matrices, the Wave-transfer matrix of the multilayer structure can be obtained.
According to the above method, the Wave-transfer matrix of any complex structure can be calculated. Combining different kind of Wave-transfer matrix to design the structure which has specific optical characteristics. Such as wideband anti-reflection film, omnidirectional reflector film, wideband filter, etc.
Finally, this research confirms that the Wave-transfer matrix can be applied to optical calculation of birefringent multilayer structure. Furthermore, the “Glass-lining folded Šolc filter” with filtering and slow light effects is designed. The positive correlation between group index, the extent of slow light and the total number of layers. It means that the above characteristics can controlled by structural design, without being limited by material.
關鍵字(中) ★ 光學偏振
★ 雙折射晶體
★ 薄膜光學
★ 波傳遞矩陣
★ 索爾克濾波器
關鍵字(英) ★ polarization
★ birefringent crystals
★ thin films
★ wave-transfer matrix
★ Šolc filter
論文目次 摘要 i
ABSTRACT ii
致謝 iv
目錄 v
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 3
1.3 結論 5
第二章4x4矩陣法 6
2.1 2x2矩陣法 6
2.2 法布立-培若干涉儀 (Fabry-Pérot Interferometer) 10
2.3 4x4矩陣法 12
2.4 結論 22
第三章 索爾克濾波器 23
3.1 Folded Šolc Filter 與 Fan Šolc Filter 23
3.2 玻璃夾層式索爾克結構 32
3.3 加入厚度漸增多層膜之Folded Šolc Filter 43
3.4 結論 47
第四章總結與未來展望 49
4.1 總結 49
4.2 未來展望 50
參考文獻 51
參考文獻 K. Kaminska, K. Robbie,” Birefringent omnidirectional reflector,” Applied Optics, Vol. 43, pp. 1570-1576, 2004.
Y. J. Park, K.M.A. Sobahan, C. K. Hwangbo, “Wideband circular polarization reflector fabricated by glancing angle deposition,” Optics Express, Vol. 16, pp. 5186-5192, 2008.
S. Liu, Y. Xu, J. L. Plawsky, et al., “Fabrication and simulation investigation of zig-zag nanorod-structured graded-index anti-reflection coatings for LED applications,” Journal of Applied Physics, Vol. 125, pp. 173102, 2019.
S. R. Kennedy, M. J. Brett,” Porous broadband antireflection coating by glancing angle deposition,” Applied Optics, Vol. 42, pp. 4573-4579,2003.
J. Diener, N. Künzner, D. Kovalev, et al.,” Dichroic behavior of multilayer structures based on anisotropically nanostructured silicon,” Journal of Applied Physics, Vol. 91, pp. 6704-6709, 2002.
R.S. Wels, T. K. Gaylord, “Electromagnetic transmission and reflection characteristics of anisotropic multilayered structures,” Journal of Optical Society of America A, Vol. 4, pp. 1720-1740, 1987.
李正中, ”薄膜光學與鍍膜技術,” 藝軒圖書出版社, Vol. 8, pp. 91-99, 2016.
I. Hodgkinson, Q. H. Wu, A. McPhun, ”Rugate filters with spatially-modulated nanostructures,” Optical Interference Coatings, pp. 457-459, 1998.
I Hodgkinson, Q. H. Wu, “Birefringent thin films and polarizing for use at normal incidence and with planar technologies,” Applied Physics Letters, Vol. 74, pp. 1794-1796, 1998.
I Hodgkinson, Q. H. Wu, “Anisotropic antireflection coatings: design and fabrication,” Optics Letters, Vol. 23, pp. 1553-1555, 1998.
F. Horowitz, “Structure-induced optical anisotropy in thin film”, Ph. D. Dissertation, University of Arizona, 1983.
P. Yeh, “Optics of Anisotropic layered media: A new 4x4 matrix algebra,” Surface Science, Vol. 96, pp.41-53, 1980.
P. Yeh, ”Electromagnetic propagation in birefringent layered media,” Journal of the Optical Society of America, Vol. 69, pp. 742-756, 1979.
B.E.A. Saleh, M.C. Teich, “Fundamentals of Photonics,” Wiley Series in Pure and Applied Optics, Vol 3, pp. 258-265, 2019.
N. O. Young, J. Kowal, “Optically Active Fluorite Films,” Nature (London), Vol. 183, pp. 104-105, 1959.
L. G. Garcia, J. P. Barranco , J. R. S. Valencia, et al., “Correlation lengths, porosity and water adsorption in TiO2 thin films prepared by glancing angle deposition,” Nanotechnology, Vol. 23, pp. 205701, 2012.
B. Dick, M. J. Brett, “Controlled growth of periodic pillars by glancing angle deposition,” Journal of Vacuum Science & Technology, Vol. 21, pp. 23-28, 2003.
F. Abdi, H. Savaloni, “Investigation of the growth conditions on the nano-structure and electrical properties of ZnS chiral sculptured thin films,” Applied Surface Science, Vol. 330, pp. 77-84, 2015.
J. Lintymer, N. Martin, J. M. Chappe, Takadoum J, et al., “Influence of zigzag microstructure on mechanical and electrical properties of chromium multilayered thin films,” Surface and Coatings Technology, Vol. 26, pp. 26-32, 2004.
S. H Woo, C. K. Hwangbo, “Optical anisotropy of TiO_2 and MgF_2 thin films prepared by glancing angle deposition,” Journal of Korean Physical Society, Vol. 49, pp. 2136-2142, 2006.
X. Xiao, G. Dong, et al., “Structure and optical properties of Nb_2 O_5 sculptured thin films by glancing angle deposition,” Applied Surface Science, Vol. 255, pp. 2192-2195, 2008.
K. M. A. Sobahan, Y. J. Park, C. K. Hwangbo, “Optical and structural properties of ZrO2 thin films fabricated by using glancing angle deposition,” Journal of Korean Physical Society, Vol. 53, pp. 2544-2548, 2008.
K. M. A. Sobahan, Y. J. Park, C. K. Hwangbo, “Effect of deposition angle on the optical and the structural properties of Ta_2 O_5 thin films fabricated by using glancing angle deposition,” Journal of Korean Physical Society, Vol. 55, pp. 1272-1277, 2009.
K. M. A. Sobahan, Y. J. Park, C. K. Hwangbo, “Optical and structural properties of ZnO thin films fabricated by using oblique angle deposition,” Journal of Korean Physical Society, Vol. 57, pp. 1657-1660, 2010.
C. Charles, N. Martin, et al., “Optical properties of nanostructured WO_3 thin films by glancing angle deposition: comparison between experiment and simulation,” Surface and Coatings Technology, Vol. 276, pp. 136-140, 2015.
S. Z. Rahchmani, H. R. Dizaji, M. H. Ehsani, “Anisotropic optical properties of ZnS thin films with zigzag structure,” Bulletin of Materials Science, Vol. 40, pp. 897-905, 2017.
F. L. Hsiao, C. Y. Ni, et al., “Design of waveguide polarization convertor based on asymmetric 1D photonic crystals,” Nanomaterials, Vol 12, pp. 2454, 2022.
Y. Wakabayashi, T. Hashimoto, J. Yamauchi, H. Nakano, "Short waveguide polarization converter operating over a wide wavelength range," Journal of Lightwave Technology, Vol. 31, pp. 1544-1550, 2013.
P. Yeh, A. Yariv, “Bragg reflection waveguides,” Optics Communications, Vol. 19, pp. 427-430, 1976.
A. Y. Cho, P. Yeh, A. Yariv,” Observation of confined propagation in Bragg waveguides,” Applied Physics Letters, Vol. 30, pp. 471-472, 1977.
R. Hui, M. O. Sullivan, “Fiber Optic Measurement Techniques,” chapter 2, Elsevier Inc., USA, 2009.
B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C.R Acad. Sci. (Paris), Vol. 197, pp. 1593, 1933.
B. Lyot, “Filter monochromatique polarisant et ses applications en physique solaire”, Ann. Astrophys., Vol. 7, pp. 32, 1944.
Y. Öhman, “A new monochromator,” Nature, Vol. 141, pp. 157-158, 1938.
Y. Öhman, “On some new birefringent filter for solar research,” Ark. Astron., Vol. 2, pp. 165-168, 1958.
I. Šolc, “Birefringent chain filter,” Journal of the Optical Society of America, Vol. 55, pp. 621, 1965.
P. Yeh, A. Yariv,” Optical waves in crystals: propagation and control of laser radiation,” Wiley-Interscience, Vol.1, pp.132-145, 1984.
D. Mori, T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Applied Physics Letters, Vol. 85, pp. 1101-1103, 2004.
T. Baba, “Slow light in photonic crystals,” Nature Photonics, Vol 2, pp. 465-473, 2008.
D. A. B. Miller, “Fundamental limit to linear one-dimensional slow light structures,” Physical Review Letters, Vol. 99, pp. 203903, 2007.
指導教授 陳啟昌(Chii-Chang Chen) 審核日期 2022-9-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明