博碩士論文 109328015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:18.222.71.231
姓名 藍嶸洧(Rong-Wei Lan)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 PVT 法生長碳化矽單晶過程中熱場、流場與濃度分佈對長 晶的影響
(Influence of Thermal Field, Flow Field and Concentration Distribution on Crystal Growth During the PVT Growth of Silicon Carbide Single Crystal)
相關論文
★ 發光二極體電極設計與電流分佈模擬分析★ 外加水平式磁場柴氏長晶法生長矽單晶之熱流場數值模擬研究
★ 外加cusp磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ MOCVD垂直式腔體中氮化鎵薄膜生長之模擬分析
★ 考量氣體分子 吸附性質之 MOCVD垂直反應腔體模擬分析★ Phosphor Packaging Design of white LED with Optical-Thermal-Electrical Coupling
★ 水平式MOCVD腔體中使用氣體脈衝方法生長氮化鋁薄膜之數值模擬與分析★ 外加Cusp磁場下柴氏法生長單晶矽之不同晶堝轉影響熱流場及氧傳輸數值分析
★ 水解二乙基鋅於近耦合噴淋式反對稱腔體 之MOCVD模擬設計分析★ MOCVD水平式腔體中氮化鎵薄膜製程碳濃度之模擬與傳輸現象分析
★ MOCVD 行星式腔體之模型建立與傳輸現象分析★ 柴氏法生長6~8吋矽單晶之高溫梯爐體與製程設計模擬
★ 300mm矽晶圓片於平坦度10奈米以下磊晶製程之數值模擬分析★ 以陽極處理法生長二氧化鈦奈米管於玻璃基板上之研究
★ 二段陽極處理法應用於鈦薄膜成長之研究★ 交流電發光二極體之接面溫度與熱阻量測研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 物理氣相傳輸法(Physical vapor transport, PVT)為生長高品質大尺寸碳化矽單晶的主流製程,但該製程的長晶過程通常需要數十天,且長晶腔處於高溫低壓的密閉狀態難以透過實驗直接測量長晶腔內溫度、速度與濃度分佈,所以經由準確地數值模擬來了解其輸送現象是非常重要的,因此本研究發展合適模擬方法,透過數值模擬分析 PVT 長晶過程坩堝內溫度場、流場和反應氣體濃度的分佈,並對晶體進行長速(Growth rate)以及生長形狀的預測。本研究 透 過 改變感應線圈的位置與結構以及上溫度觀測點 (upper temperature)的溫度,來分析晶體生長初階段晶種(Seed)上的形貌以及長速,使系統達到最佳的長晶條件(Optimization);接著將 PVT 法單晶成長過程變成多個穩態生長步階(Steady-state growth steps),利用準穩態(Quasi-steady state)模擬碳化矽晶體在不同晶體厚度下坩堝內溫度場、流場和濃度分佈變化,並進一步對晶體形貌與長速進行預測,藉此導入長晶過程中可以降低晶體缺陷提高長速的優化製程技術。
模擬結果顯示晶體厚度增加時,晶體中心與邊緣皆有長速下降的趨勢,其
原因為腔體軸向溫度梯度與表面平均擴散係數降低,以及粉末表面物種分壓降低造成。而 PVT 製程上的改善依據為(1)調整線圈或改變坩堝構造來改善軸向溫度梯度或提高製程溫度以增加晶體的長速。(2)利用雙感應線圈降低晶體表面的徑向溫度梯度,使晶體中心與邊緣的長晶速率差距不要過大,避免晶體生長時在晶體內部產生熱應力。
摘要(英) Physical vapor transport (PVT) is the mainstream process for growing highquality large-size silicon carbide single crystals. However, the crystal growth process of this process usually takes several tens of days, Moreover, the crystal growth chamber is in a closed state of high temperature and low pressure, so it is difficult to directly measure the temperature, velocity and concentration distribution in the crystal growth chamber through experiments. Therefore, it is very important to understand the transport phenomenon through accurate numerical simulation. In this study, a suitable simulation method was developed, through numerical simulation to analyze the distribution of temperature field, flow field and reaction gas concentration in the crucible during PVT crystallization, and to predict the growth rate and the growth
shape of the crystal.
In this study, by changing the position and structure of the induction coil and the temperature of the upper temperature observation point, the morphology and growth rate of the seed crystal in the initial stage of crystal growth were analyzed, so that the system could achieve the best crystal growth conditions. Then, the PVT single crystal growth process is changed into multiple steady-state growth steps, and the quasisteady state is used to simulate the temperature field, flow field and concentration distribution changes in the crucible at different crystal thicknesses. Then, the crystal morphology and growth rate are predicted, so as to introduce an optimized process technology that can reduce crystal defects and increase the growth rate during the crystal growth process.
The simulation results show that when the thickness of the crystal increases, both center and edge of the crystal tend to reduce the growth rate. The reason is that the axial temperature gradient of the cavity and the average diffusion coefficient of the surface are reduced, and the partial pressure of species on the powder surface is reduced. The improvement in PVT process is based on (1) adjusting the coil or changing the crucible configuration to improve the axial temperature gradient or increase the process temperature to increase the growth rate of the crystal. (2) Use double induction coils to reduce the radial temperature gradient on the crystal surface,so that the difference in the growth rate between center and edge of the crystal is reduced to avoid thermal stress inside the crystal during crystal growth.
關鍵字(中) ★ 物理氣相傳輸法
★ 碳化矽
★ 數值模擬
關鍵字(英) ★ Physical Vapor Transport
★ Silicon Carbide
★ Numerical simulation
論文目次 摘要...I
Abstract... II
致謝...IV
目錄... V
圖目錄... VIII
表目錄...XI
符號說明... XII
第一章 緒論...1
1.1 研究背景... 1
1.2 文獻回顧... 3
1.2.1 物理氣相傳輸法生長碳化矽單晶的條件... 3
1.2.2 碳化矽分解與長晶熱力學... 3
1.2.3 物理氣相傳輸法中影響長速的參數... 4
1.2.4 溫度分佈對晶體形貌的影響... 5
1.3 研究動機與目的... 8
第二章 研究方法... 9
2.1 物理系統... 9
2.2 基本假設... 12
2.3 統御方程式... 13
2.3.1 感應電流與電熱耦合... 13
2.3.2 熱傳... 13
2.3.3 流體力學... 14
2.3.4 質傳... 15
2.3.5 長晶熱力學與過飽和度... 15
2.3.6 長晶動力學... 16
2.4 邊界條件... 17
2.4.1 冷卻系統... 17
2.4.2 固體表面間輻射熱傳... 18
2.4.3 物種的傳輸... 19
2.4.4 坩堝內氣體... 20
2.5 材料性質... 22
第三章 數值方法... 28
3.1 數值分析求解... 28
3.2 網格配置... 30
3.3 輻射解析度測試.... 31
3.4 模型驗證... 33
第四章 結果與討論... 35
4.1 物理氣相傳輸法的熱流場分析... 35
4.1.1 感應電磁場分佈與熱源位置的關係... 35
4.1.2 物理氣相傳輸法的溫度分佈... 36
4.1.3 長晶腔內的流場... 37
4.2 腔體內物種濃度與通量分佈... 42
4.3 不同上溫度觀測點溫度對長晶速率的影響... 47
4.4 感應線圈設計對長晶速率的影響... 50
4.4.1 不同線圈高度... 50
4.4.2 非等距線圈... 51
4.5 不同晶體厚度的長速變化... 60
4.6 不同粉末孔隙率比較... 69
第五章 結論與未來研究方向... 71
5.1 結論... 71
5.2 未來研究方向... 73
參考文獻... 74
參考文獻 [1] P. J. Wellmann, "Review of SiC crystal growth technology," Semiconductor
Science and Technology, vol. 33, pp. 1-21, 2018.
[2] S. B. Reese, T. Remo, J. Green, A. Zakutayev, "How much will gallium oxide
power electronics cost," Joule, vol. 3, p.p. 1-5, 2019.
[3] S. Lin, Z. Chen, B. Liu, L. Li, X. Feng, "Identification and control of SiC
polytypes in PVT method," Journal of Materials Science, vol. 21, pp. 326-329,
2010.
[4] S. K. Lilov, "Study of the equilibrium processes in the gas phase during silicon
carbide sublimation," Materials Science and Engineering, B, vol. 21, pp. 65-69,
1993.
[5] Q.-S. Chen, H. Zhang, V. Prasad, C. M. Balkas, N. K. Yushin, and S. Wang,
"Kinetics and modeling of sublimation growth of silicon carbide bulk crystal,"
Journal of Crystal Growth, vol. 224, pp. 101-110, 2001.
[6] J. Su, X. Chen, and Y. Li, "Numerical design of induction heating in the PVT
growth of SiC crystal, "Journal of Crystal Growth, vol. 401, pp. 128-132, 2014.
[7] R. Ma, H. Zhang, V. Prasad, M. Dudley, "Growth kinetics and thermal stress in
the sublimation growth of silicon carbide," Crystal Growth & Design, vol. 2, no.
3, p.p. 213-220, 2002.
[8] J. M. Dedulle, M. Anikin, M. Pons, E. Blanquet, A. Pisch, R. Madar, C. Bernard,
"Free growth of 4H-SiC by sublimation method," Materials Science Forum, vol.
457-460, pp. 71-74, 2004.
[9] I. D. Matukov et al., "Modeling of facet formation in SiC bulk crystal growth,"
Journal of Crystal Growth, vol. 266, no. 19, pp. 313-319, 2004.
[10] Q.-S. Chen, H. Zhang, V. Prasad, C. M. Balkas, N. K. Yushin, "Modeling of heat
transfer and kinetics of physical vapor transport growth of silicon carbide
crystals," Journal of Heat Transfer, vol. 123, pp. 1098-1109, 2001.
[11] Q.-S. Chen, J.-Y. Yan, and V. Prasad, "Application of flow-kinetics model to the
PVT growth of SiC crystals," Journal of Crystal Growth, vol. 303, no. 1, pp. 357-
361, 2007.
[12] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, "Fundamentals of heat
and mass transfer," John Wiley & Sons, 6
th Edition, 2007.
[13] D. Duc, I. Naoki, F. Kazuyoshi, "A study of near-infrared nanosecond laser
ablation of silicon carbide, " International Journal of Heat and Mass Transfer, vol.
65, p.p. 713-718, 2013.
[14] P. Vueghs, P. Beckers, "Presentation of the hemisphere method," Engineering
Sciences, vol. 53, 2006.
[15] T. Kaneko, "Growth kinetics of vapor-grown SiC," Journal of Crystal Growth,
vol. 128, pp. 354-357, 1993.
[16] S. H. P. Chen, S. C. Saxena, "Thermal conductivity of argon in the temperature
range 350 to 2500 K," Molecular Physics, vol. 29, no. 2, pp. 455-466, 1975.
[17] O. Klein, P. Philip, "Transient numerical investigation of induction heating during
sublimation growth of silicon carbide single crystals," Journal of Crystal Growth,
vol. 247, pp. 219-235, 2003.
[18] N. M. Ravindra, S. R. Marthi, A. Banobre, "Radiative properties of
semiconductors," IOP Concise Physics, 2017.
[19] Y. Wang, M. Sasaki, T. Hiral, "Thermal properties of chemical vapour-deposition
SiC-C nanocomposites," Journal of Materials Science, vol. 26, pp. 5495-5501,
1991.
[20] P. J. Wellmann, M. Bickermann, D. Hofmann, L. Kadinski, M. Selder, T. L.
Straubinger, A. Winnacker, "In situ visualization and analysis of silicon carbide
physical vapor transport growth using digital X-ray imaging," Journal of Crystal
Growth, vol. 216, pp. 263-272, 2000.
[21]B. Gao, X. J. Chen, S. Nakano, S. Nishizawa, K. Kakimoto, "Analysis of SiC
crystal sublimation growth by fully coupled compressible multi-phase flow
simulation," Journal of Crystal Growth, vol. 312, pp. 3349-3355, 2010.
[22] D. W. Snyder, V. D. Heydemann, W. J. Everson, D. L. Barrett, "Large dimeter
PVT growth of bulk 6H SiC crystal," Materials Science Forum, vol. 338-342, pp.
9-12, 2000.
[23] H. M. Hobgood, D. L. Barrett, J. P. McHugh, R. C. Clarke, S. Sriram, A. A. Burk,
J. Greggi, C. D. Brandt, R. H. Hopkins, W. J. Choyke, "Large diameter 6H-SiC
for microwave device applications," Journal of Crystal Growth, vol. 137, pp. 181-
186, 1994.
[24] S. Ota, T. Furusho, H. Takagi, S. Oshima, S. Nishino, "High quality SiC bulk
growth by sublimation method using elemental Silicon and Carbon powder as SiC
source materials," Materials Science Forum, vol. 457-460, pp. 115-118, 2004.
指導教授 陳志臣(Zhi-Chen Chen) 審核日期 2022-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明