博碩士論文 104690001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:240 、訪客IP:3.135.203.29
姓名 吳栢兆(Po-Chao Wu)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 應用鍶-釹-鉛同位素探討大氣與水體環境中金屬來源與傳輸過程之研究
(Applications of Sr-Nd-Pb isotopes for tracing sources and transport processes in atmospheric and aquatic environments)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-1以後開放)
摘要(中) 為深入瞭解台灣環境中之重金屬來源與其傳輸過程,本研究建立了一套適用於環境樣品之高精準鍶-釹-鉛同位素比值分析技術,並應用於探討台灣地區的環境物質,包含大氣氣溶膠、河川水體樣品以及固體廢棄物中之金屬來源,分別於第二至第五章中以個別應用案例說明。
論文第二章以高精準鉛同位素技術探討台灣中部地區氣膠PM10中鉛的來源。分析結果顯示鉛同位素搭配金屬元素比值以及ECMWF資料庫,可對PM10的來源以及傳輸更清楚掌握。在低風速期間,PM10中的鉛主要來自境內石油燃燒和煉油廠(48-88%),而燃煤的貢獻最低(< 21%)。在高風速期間,自然源的貢獻從13%增加至31%。儘管鉛僅佔PM10的一小部分,在本研究區觀察到PM10質量與鉛、釩和鋁濃度之間存在高相關性(r = 0.89,p < 0.001,多重線性分析),顯示PM10的化學特徵和鉛同位素應可用於追踪台灣中部PM10的來源。此外,分析境外事件期間PM10的鉛同位素比值證實了大陸氣溶膠長程傳輸的影響,且PM10的化學特徵與境內事件期間的PM10的化學特徵顯著不同。
論文第三章利用鉛同位素探討在東南亞生質燃燒活動發生時(泰國清邁地區之氣膠樣品),其氣膠化學以及傳輸至鹿林山之化學特性變化。分析結果顯示當清邁氣膠中非海鹽鉀(nss-K+)濃度增加時,鐵濃度與鉛同位素比值皆增加,此現象與文獻中觀測到的生質燃燒會將地殼物質帶入大氣當中形成氣膠同時增加微量元素之溶解度(如鐵)一致。除了生質燃燒之訊號外,本研究也發現清邁氣膠中也含有人為活動之訊號,這些氣膠隨著微量元素濃度增加而具有較低之鉛同位素(206Pb/207Pb)比值,顯示可能受到燃油或其他工業活動之影響。透過此案例之探討,分析不同粒徑的氣膠顯示該方式能進一步解析不同來源之訊號(例如:生質燃燒之影響主要集中在0-0.95 µm顆粒,其餘人為源貢獻集中在0.95-3.0 µm顆粒)。
第四章應用已建立之鍶-鉛同位素分析技術探討受金屬污染之台灣南部河川。透過此二同位素系統之分析可以對河川水體中之金屬來源有更進一步之瞭解,鍶同位素之分析可瞭解水體來源;鉛同位素之分析則可追蹤重金屬鉛(或具親顆粒性之重金屬元素)之可能來源。在阿公店溪流域的調查結果發現,上游河水與工業廢水之鍶同位素比值較高,若搭配鉬/鍶元素比能進一步區別兩者。鉛同位素分析結果顯示上游河水206Pb/207Pb比值較高,而本研究調查之工業污水處理單元廢水則具有較低之鉛同位素比值。透過同位素混合模型搭配可能的端源之同位素比值可估算出各端源對河水中鍶、鉛的貢獻量。模擬估計污染熱點之鍶可能主要來源應為自然源(上游河水)與一具有低87Sr/86Sr比值之工業源排放水所混合,分別佔63~76%以及25~36%,而其他已調查之工業排水佔不到1%。河川中鉛的來源變化較大,來自於上游河水和工業源之比例分別為9-85%和15-91%。時間序列之鉛同位素分析結果顯示降雨期間的高濃度鉛最有可能為自然來源。
第五章應用鍶-釹-鉛同位素系統探討環境固體廢棄物是否具可辨別之同位素訊號。本研究針對台灣地區電弧爐煉鋼廠爐碴及其所使用副料進行同位素分析,以瞭解煉鋼廠鍶、釹、鉛之來源,並建立不同工廠之數據資料。結果顯示,鍶-釹-鉛同位素比值能夠區分三間工廠的還原碴或氧化碴。然而爐碴的同位素比值可能會隨時間而有變化,應與所添加的副料來源有關。進一步分析副料之同位素比值,結果顯示鍶和釹同位素比值應主要受所添加的石灰和矽鐵控制,鉛同位素比值則可與矽鐵或錳鐵較相關,因此這些添加的材料可能是同位素鑑別的關鍵。若能建立各工廠廢棄物及副料之同位素資料庫將能以鍶-釹-鉛同位素比來區分爐碴的來源,在爐碴來源示蹤上極具潛力。
總體而言,本研究證實了以多重同位素示蹤法(鍶-釹-鉛同位素)研究大氣及水體環境重金屬污染來源和傳輸的實用性,於環境鑑識或模擬驗證等方面的皆具潛力。對於未來台灣地區重金屬的污染來源及傳輸過程應能提供重要的參考依據。
摘要(英) In this study, we have established an analytical protocol for high-precision Sr-Nd-Pb isotope ratio measurements on a variety of environmental materials, including airborne particles, riverine materials, and solid waste. We have successfully used this technique to better constrain metal sources and transport in the highly human-impacted environment of Taiwan. Detailed information on the literature review and methodology are given in Chapter 1.
In Chapter 2, we present a comprehensive approach for tracing possible Pb sources in PM10 in central Taiwan by using chemical characteristics, Pb isotope ratios, and reanalysis datasets (ECMWF). The results suggested that Pb in PM10 was predominantly contributed from oil combustion and oil refineries during the local events (48–88%), whereas the lowest contributions were from coal combustion (< 21%). During periods of high wind speed, the contribution from natural sources increased significantly from 13 to 31%. Despite Pb represented only a small portion of PM10, a strong correlation (r = 0.89, p  < 0.001, multiple regression analysis) between PM10 mass and the concentrations of Pb, V, and Al was observed in the study area, suggesting that the sources of PM10 in central Taiwan can be possibly tracked by using chemical characteristics and Pb isotopes in PM10. Moreover, the Pb isotopic signatures of PM10 collected during the LRT event confirmed the impact of airborne pollutants from Mainland China, and the chemical characteristics of the PM10 significantly differed from those collected during local events.
In Chapter 3, we further applied Pb isotope ratios to study the characteristics of aerosols and transport from Chiang Mai (Thailand) to Mt. Lulin (Taiwan) during the Southeast Asia biomass burning season. We analyzed the inorganic compositions (water-soluble ions and trace metals) of size-fractionated aerosols collected at both sites. The chemical and Pb isotopic signatures from biomass burning in Chiang Mai aerosols are characterized by high non-sea-salt K+ concentrations, high Fe concentrations, and high 206Pb/207Pb (208Pb/207Pb) isotope ratios, suggesting greater contributions from crustal materials during biomass burning, consistent with those observed in previous studies. Aside from biomass burning signatures, we also found that aerosols with high contents of trace metals had lower 206Pb/207Pb (208Pb/207Pb) isotope ratios, indicating oil combustion and/or other industrial activities are possible sources of the observed enrichments of trace metals. The analysis of Mt. Lulin aerosols showed that biomass burning from Southeast Asia might be an important aerosol source influencing aerosol compositions at Mt. Lulin, especially for the fine particles (<0.95 µm). The chemical analyses of size-fractionated aerosols demonstrated that more information about sources of aerosols could be obtained through this approach.
Applications of the Sr-Pb isotope ratios for studying metal sources and transport in two highly polluted rivers (i.e. Agongdian River and Ji-Shuei River) in southern Taiwan are further discussed in Chapter 4. Of special interest is that in the Agongdian River, upstream waters are characterized by high Sr and Pb isotope ratios; on the other hand, most effluents collected from wastewater treatment units had low Pb isotope ratios. This makes it possible to estimate relative contributions from natural and anthropogenic sources. Time-series studies were carried out in both river catchments. A simple isotope-mixing model estimated that a major portion of Sr could be originated from upstream waters (63~76%), whereas contributions from industrial sources are relatively small (25~36% and 0.3~0.4% for industrial sources with low 87Sr/86Sr and other industrial effluents, respectively) in the Agongdian River. Contributions of Pb vary significantly, with 9-85% and 15-91% originating from natural and industrial sources, respectively. The results of Pb isotope analyses further suggested that high concentrations of Pb during the rain events were most likely natural Pb derived from crustal materials.
In Chapter 5, we further evaluate the potential of using Sr-Nd-Pb isotope ratios to distinguish sources of solid wastes from the same types of industries. Materials including solid waste (slag) and auxiliary materials were analyzed to further constrain sources of Sr-Nd-Pb in slags from three steel smelting plants. The results show that Sr-Nd-Pb isotope ratios in slags and auxiliary materials have great potential for discriminating reductive or oxidative slags from the three plants. However, isotope ratios of slags can be significantly different over time, most likely due to different sources of auxiliary materials. The measured isotope data of the auxiliary materials indicated that Sr and Nd isotope ratios in slags were mainly controlled by lime and ferro-silicon, and Pb isotope ratios were most likely related to ferro-silicon or ferromanganese, implying that these auxiliary materials are the key to discriminate the origins of the slags. Our results demonstrated that sources of slags can be discriminated by the combined Sr-Nd-Pb isotope ratios, and thus serves as a probe for tracing sources of slags if the databases for plants and associated materials are better constrained.
Overall, this study demonstrates the robustness of using Sr-Nd-Pb isotope ratios to trace sources and transport pathways of metal pollution in a variety of environmental materials, and has great potential for studies in environmental forensics and model validations. The multi-tracer approach developed in this study should provide important information for tracing metal sources and transport pathways in the environment increasingly impacted by human activities.
關鍵字(中) ★ 氣膠
★ 河水
★ 金屬元素
★ 鍶-釹-鉛同位素
★ 來源示蹤
★ 傳輸過程
關鍵字(英) ★ aerosol
★ river water
★ metal element
★ Sr-Nd-Pb isotopes
★ sources tracing
★ transport processes
論文目次 摘要 i
Abstract iii
Acknowledgement vi
Table of Contents vii
List of Tables x
List of Figures xii
Chapter 1. Introduction
1.1. Human perturbation of metal cycle 1
1.2. Heavy metal and metal pollution 1
1.3. Source apportionment by receptor-based CMB model and PMF 2
1.4. Source tracing by metal isotopes 3
1.5. Applications of Metal Isotopes for Environmental Forensics in Taiwan 5
1.6. Approaches in this study 6
1.7. Case studies in Taiwan 7
Chapter 2. Tracing local sources and long-range transport of PM10 in central Taiwan by using chemical characteristics and Pb isotope ratios
2.1. Introduction 9
2.2. Materials and Methods 13
2.2.1. Sampling site and PM10 collection 13
2.2.2. Chemical analysis 14
2.2.3. Pb isotope analysis 19
2.2.4. Enrichment factor 21
2.2.5. Reanalysis dataset and back trajectory analysis 21
2.3. Results and Discussion 23
2.3.1. PM10, ion, and metal concentrations 23
2.3.2. Enrichment factors and elemental ratios in PM10 28
2.3.3. Pb isotope compositions of potential PM10 sources in Taiwan 34
2.3.4. Pb source of PM10 in central Taiwan: Local events 38
2.3.5. Pb source of PM10 in central Taiwan: LRT and dust storm events 41
2.3.6. Sr-Nd isotope ratios in PM10 48
2.3.7. Estimating the relative contribution to Pb in PM10 51
2.4. Summary 54

Chapter 3. Source and transport of aerosols during Southeast Asia biomass burning: Insight from size-fractionated aerosol chemical characteristics and Pb isotope ratios
3.1. Introduction 57
3.2. Materials and Methods 58
3.2.1. Study sites and sampling 58
3.2.2. Chemical analysis 61
3.2.3. Pb isotope analysis 61
3.2.4. Reanalysis dataset and back trajectory analysis 62
3.3. Results and discussion 63
3.3.1. Water soluble concentrations of ions and trace metals 63
3.3.2. EAC4 reanalysis dataset for source and transport of sulfate and nitrate 71
3.3.3. Potential metal ratios as indicators of water-soluble trace metals 80
3.3.4. Pb isotope ratios as an indicator for Pb sources 82
3.4. Summary 93
Chapter 4. Tracing metal sources in highly polluted rivers by using chemical characteristics and Sr-Pb isotope ratios
4.1. Introduction 95
4.2. Materials and Methods 97
4.2.1. Study regions 97
4.2.2. Water sampling and chemical analysis 99
4.2.3. Isotope ratio analyses 100
4.2.4. River Pollution Index (RPI) 102
4.3. Results and Discussion 103
4.3.1. Water quality and trace metal concentration in the river water 103
4.3.2. Partitioning of Sr and Pb between dissolved and total recoverable phase 107
4.3.3. Time-series water chemistry at monitoring sites 111
4.3.4. Isotopic evidence for metal source tracing 115
4.3.5. Estimate of contributions from different sources 124
4.4. Summary 128
Chapter 5. Source apportionment of industrial solid wastes and anthropogenic pollution using Sr, Nd and Pb isotopes
5.1. Introduction 129
5.2. Materials and methods 130
5.2.1. Sample preparation 130
5.2.2. Column chemistry 131
5.2.3. Instrumental measurements 132
5.3. Results and discussion 134
5.3.1. Elemental metal concentrations 134
5.3.2. Sr-Nd-Pb isotopic compositions 137
5.4. Summary 145
Chapter 6. Conclusions
6.1 Summary of Sr-Nd-Pb isotope data in environmental materials 147
6.2 Conclusions 151
References 155
參考文獻 Aarons, S. M., Aciego, S. M., & Gleason, J. D. (2013). Variable Hf-Sr-Nd radiogenic isotopic compositions in a Saharan dust storm over the Atlantic: Implications for dust flux to oceans, ice sheets and the terrestrial biosphere. Chemical Geology, 349-350, 18-26.
Böhlke, J. K., & Horan, M. (2000). Strontium isotope geochemistry of groundwaters and streams affected by agriculture, Locust Grove, MD. Applied Geochemistry, 15(5), 599-609.
Barua, D. K. (2005). Beaufort Wind Scale. In M. L. Schwartz (Ed.), Encyclopedia of Coastal Science (pp. 186-186). Dordrecht: Springer Netherlands.
Baumann, K., Jayanty, R. K. M., & Flanagan, J. B. (2008). Fine Particulate Matter Source Apportionment for the Chemical Speciation Trends Network Site at Birmingham, Alabama, Using Positive Matrix Factorization. Journal of the Air & Waste Management Association, 58(1), 27-44.
Belis, C. A., Karagulian, F., Larsen, B. R., & Hopke, P. K. (2013). Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmospheric Environment, 69, 94-108.
Bi, X.-Y., Li, Z.-G., Wang, S.-X., Zhang, L., Xu, R., Liu, J.-L., Yang, H.-M., & Guo, M.-Z. (2017). Lead Isotopic Compositions of Selected Coals, Pb/Zn Ores and Fuels in China and the Application for Source Tracing. Environmental Science & Technology, 51(22), 13502-13508.
Bigalke, M., Weyer, S., Kobza, J., & Wilcke, W. (2010). Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil. Geochimica et Cosmochimica Acta, 74(23), 6801-6813.
Bollhöfer, A., & Rosman, K. J. R. (2001). Isotopic source signatures for atmospheric lead: the Northern Hemisphere. Geochimica et Cosmochimica Acta, 65(11), 1727-1740.
Bressi, M., Sciare, J., Ghersi, V., Mihalopoulos, N., Petit, J. E., Nicolas, J. B., Moukhtar, S., Rosso, A., Féron, A., Bonnaire, N., Poulakis, E., & Theodosi, C. (2014). Sources and geographical origins of fine aerosols in Paris (France). Atmos. Chem. Phys., 14(16), 8813-8839.
Chantara, S., Sillapapiromsuk, S., & Wiriya, W. (2012). Atmospheric pollutants in Chiang Mai (Thailand) over a five-year period (2005–2009), their possible sources and relation to air mass movement. Atmospheric Environment, 60, 88-98.
Chao, H.-C., You, C.-F., Liu, H.-C., & Chung, C.-H. (2013). The origin and migration of mud volcano fluids in Taiwan: Evidence from hydrogen, oxygen, and strontium isotopic compositions. Geochimica et Cosmochimica Acta, 114, 29-51.
Chen, J., Li, G., Yang, J., Rao, W., Lu, H., Balsam, W., Sun, Y., & Ji, J. (2007). Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust. Geochimica et Cosmochimica Acta, 71(15), 3904-3914.
Chen, J., Tan, M., Li, Y., Zhang, Y., Lu, W., Tong, Y., Zhang, G., & Li, Y. (2005). A lead isotope record of shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline. Atmospheric Environment, 39(7), 1245-1253.
Chen, J., Tan, M., Li, Y., Zheng, J., Zhang, Y., Shan, Z., Zhang, G., & Li, Y. (2008). Characteristics of trace elements and lead isotope ratios in PM2.5 from four sites in Shanghai. Journal of Hazardous Materials, 156(1), 36-43.
Chen, Y.-C., Hsu, C.-Y., Lin, S.-L., Chang-Chien, G.-P., Chen, M.-J., Fang, G.-C., & Chiang, H.-C. (2015). Characteristics of Concentrations and Metal Compositions for PM2.5 and PM2.5_10 in Yunlin County, Taiwan during Air Quality Deterioration. Aerosol and Air Quality Research, 15(7), 2571-2583.
Cheng, F.-Y., Yang, Z.-M., Ou-Yang, C.-F., & Ngan, F. (2013). A numerical study of the dependence of long-range transport of CO to a mountain station in Taiwan on synoptic weather patterns during the Southeast Asia biomass-burning season. Atmospheric Environment, 78, 277-290.
Cheng, H., & Hu, Y. (2010a). Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: A review. Environmental Pollution, 158(5), 1134-1146.
Cheng, M.-C., You, C.-F., Lin, F.-J., Chung, C.-H., & Huang, K.-F. (2010b). Seasonal variation in long-range transported dust to a subtropical islet offshore northern Taiwan: Chemical composition and Sr isotopic evidence in rainwater. Atmospheric Environment, 44(28), 3386-3393.
Cheng, M.-C., You, C.-F., Lin, F.-J., Huang, K.-F., & Chung, C.-H. (2011). Sources of Cu, Zn, Cd and Pb in rainwater at a subtropical islet offshore northern Taiwan. Atmospheric Environment, 45(11), 1919-1928.
Chester, R., Nimmo, M., Fones, G. R., Keyse, S., & Zhang, Z. (2000). Trace metal chemistry of particulate aerosols from the UK mainland coastal rim of the NE Irish sea. Atmospheric Environment, 34(6), 949-958.
Chifflet, S., Amouroux, D., Bérail, S., Barre, J., Van, T. C., Baltrons, O., Brune, J., Dufour, A., Guinot, B., & Mari, X. (2018). Origins and discrimination between local and regional atmospheric pollution in Haiphong (Vietnam), based on metal(loid) concentrations and lead isotopic ratios in PM10. Environmental Science and Pollution Research, 25(26), 26653-26668.
Choi, M.-S., Yi, H.-I., Yang, S. Y., Lee, C.-B., & Cha, H.-J. (2007). Identification of Pb sources in Yellow Sea sediments using stable Pb isotope ratios. Marine Chemistry, 107(2), 255-274.
Chow, J. C. (1995). Measurement Methods to Determine Compliance with Ambient Air Quality Standards for Suspended Particles. Journal of the Air & Waste Management Association, 45(5), 320-382.
Christian, L. N., Banner, J. L., & Mack, L. E. (2011). Sr isotopes as tracers of anthropogenic influences on stream water in the Austin, Texas, area. Chemical Geology, 282(3), 84-97.
Chu, H.-Y., & You, C.-F. (2007). Dissolved constituents and Sr isotopes in river waters from a mountainous island – The Danshuei drainage system in northern Taiwan. Applied Geochemistry, 22(8), 1701-1714.
Chuang, M.-T., Chen, Y.-C., Lee, C.-T., Cheng, C.-H., Tsai, Y.-J., Chang, S.-Y., & Su, Z.-S. (2016a). Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan. Environmental Pollution, 214, 273-281.
Chuang, M.-T., Lee, C.-T., Chou, C. C. K., Engling, G., Chang, S.-Y., Chang, S.-C., Sheu, G.-R., Lin, N.-H., Sopajaree, K., Chang, Y.-J., & Hong, G.-J. (2016b). Aerosol transport from Chiang Mai, Thailand to Mt. Lulin, Taiwan – Implication of aerosol aging during long-range transport. Atmospheric Environment, 137, 101-112.
Chung, C.-H., You, C.-F., & Chu, H.-Y. (2009). Weathering sources in the Gaoping (Kaoping) river catchments, southwestern Taiwan: Insights from major elements, Sr isotopes, and rare earth elements. Journal of Marine Systems, 76(4), 433-443.
Chung, C.-H., You, C.-F., Hsu, S.-C., & Liang, M.-C. (2019). Sulfur isotope analysis for representative regional background atmospheric aerosols collected at Mt. Lulin, Taiwan. Scientific Reports, 9(1), 19707.
Crutzen Paul, J., & Andreae Meinrat, O. (1990). Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science, 250(4988), 1669-1678.
Díaz-Somoano, M., Kylander, M. E., López-Antón, M. A., Suárez-Ruiz, I., Martínez-Tarazona, M. R., Ferrat, M., Kober, B., & Weiss, D. J. (2009). Stable Lead Isotope Compositions In Selected Coals From Around The World And Implications For Present Day Aerosol Source Tracing. Environmental Science & Technology, 43(4), 1078-1085.
Das, R., Bin Mohamed Mohtar, A. T., Rakshit, D., Shome, D., & Wang, X. (2018). Sources of atmospheric lead (Pb) in and around an Indian megacity. Atmospheric Environment, 193, 57-65.
Deng, F., Hellmann, S., Zimmermann, T., & Pröfrock, D. (2021). Using Sr-Nd-Pb isotope systems to trace sources of sediment and trace metals to the Weser River system (Germany) and assessment of input to the North Sea. Science of The Total Environment, 791, 148127.
Desboeufs, K. V., Sofikitis, A., Losno, R., Colin, J. L., & Ausset, P. (2005). Dissolution and solubility of trace metals from natural and anthropogenic aerosol particulate matter. Chemosphere, 58(2), 195-203.
Dou, Y., Yang, S., Shi, X., Clift, P. D., Liu, S., Liu, J., Li, C., Bi, L., & Zhao, Y. (2016). Provenance weathering and erosion records in southern Okinawa Trough sediments since 28ka: Geochemical and Sr–Nd–Pb isotopic evidences. Chemical Geology, 425, 93-109.
Dwivedi, D., Agarwal, A. K., & Sharma, M. (2006). Particulate emission characterization of a biodiesel vs diesel-fuelled compression ignition transport engine: A comparative study. Atmospheric Environment, 40(29), 5586-5595.
Environmental Protection Administration, Executive Yuan, R.O.C. (2019a). Air Quality Annual Report of R.O.C. (Taiwan).
Environmental Protection Administration, Executive Yuan, R.O.C. (2019b). Project of river water pollution source identification formation and practice (2/3).
Environmental Protection Administration, Executive Yuan, R.O.C. (2020). River sediment, pollution potential investigation, hazard assessment.
Ettler, V. (2016). Soil contamination near non-ferrous metal smelters: A review. Applied Geochemistry, 64, 56-74.
Ewing, S. A., Christensen, J. N., Brown, S. T., Vancuren, R. A., Cliff, S. S., & Depaolo, D. J. (2010). Pb Isotopes as an Indicator of the Asian Contribution to Particulate Air Pollution in Urban California. Environmental Science & Technology, 44(23), 8911-8916.
Fang, G.-C., Chiang, H.-C., Chen, Y.-C., Xiao, Y.-F., & Zhuang, Y.-J. (2014). Particulates and Metallic Elements Monitoring at Two Sampling Sites (Harbor, Airport) in Taiwan. Environmental Forensics, 15(4), 296-305.
Fang, G.-C., Kao, C.-L., Zhuang, Y.-J., & Liang, G.-R. (2020). Characterization of trace metals from different particle sizes, sources and contamination identifications for a mixed site in Taiwan. Environmental Forensics, 21(3-4), 351-362.
Fernández Espinosa, A. J., Ternero Rodrı́guez, M., Barragán de la Rosa, F. J., & Jiménez Sánchez, J. C. (2002). A chemical speciation of trace metals for fine urban particles. Atmospheric Environment, 36(5), 773-780.
Flegal, A. R., & Smith, D. R. (1995). Measurements of Environmental Lead Contamination and Human Exposure. In G. W. Ware (Ed.), Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews (pp. 1-45). New York, NY: Springer New York.
Gallon, C., Ranville, M. A., Conaway, C. H., Landing, W. M., Buck, C. S., Morton, P. L., & Flegal, A. R. (2011). Asian Industrial Lead Inputs to the North Pacific Evidenced by Lead Concentrations and Isotopic Compositions in Surface Waters and Aerosols. Environmental Science & Technology, 45(23), 9874-9882.
Gao, Y., Nelson, E. D., Field, M. P., Ding, Q., Li, H., Sherrell, R. M., Gigliotti, C. L., Van Ry, D. A., Glenn, T. R., & Eisenreich, S. J. (2002). Characterization of atmospheric trace elements on PM2.5 particulate matter over the New York–New Jersey harbor estuary. Atmospheric Environment, 36(6), 1077-1086.
Grosbois, C., Négrel, P., Fouillac, C., & Grimaud, D. (2000). Dissolved load of the Loire River: chemical and isotopic characterization. Chemical Geology, 170(1), 179-201.
Gross, B. H., Kreutz, K. J., Osterberg, E. C., McConnell, J. R., Handley, M., Wake, C. P., & Yalcin, K. (2012). Constraining recent lead pollution sources in the North Pacific using ice core stable lead isotopes. Journal of Geophysical Research: Atmospheres, 117(D16).
Guéguen, F., Stille, P., Dietze, V., & Gieré, R. (2012). Chemical and isotopic properties and origin of coarse airborne particles collected by passive samplers in industrial, urban, and rural environments. Atmospheric Environment, 62, 631-645.
Guieu, C., Bonnet, S., Wagener, T., & Loÿe-Pilot, M.-D. (2005). Biomass burning as a source of dissolved iron to the open ocean? Geophysical Research Letters, 32(19).
Han, C., Do Hur, S., Han, Y., Lee, K., Hong, S., Erhardt, T., Fischer, H., Svensson, A. M., Steffensen, J. P., & Vallelonga, P. (2018). High-resolution isotopic evidence for a potential Saharan provenance of Greenland glacial dust. Scientific Reports, 8(1), 15582.
Harkness, J. S., Darrah, T. H., Moore, M. T., Whyte, C. J., Mathewson, P. D., Cook, T., & Vengosh, A. (2017). Naturally Occurring versus Anthropogenic Sources of Elevated Molybdenum in Groundwater: Evidence for Geogenic Contamination from Southeast Wisconsin, United States. Environmental Science & Technology, 51(21), 12190-12199.
Heal, M. R., Hibbs, L. R., Agius, R. M., & Beverland, I. J. (2005). Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK. Atmospheric Environment, 39(8), 1417-1430.
Hissler, C., Stille, P., Iffly, J. F., Guignard, C., Chabaux, F., & Pfister, L. (2016). Origin and Dynamics of Rare Earth Elements during Flood Events in Contaminated River Basins: Sr–Nd–Pb Isotopic Evidence. Environmental Science & Technology, 50(9), 4624-4631.
Hissler, C., Stille, P., Krein, A., Geagea, M. L., Perrone, T., Probst, J.-L., & Hoffmann, L. (2008). Identifying the origins of local atmospheric deposition in the steel industry basin of Luxembourg using the chemical and isotopic composition of the lichen Xanthoria parietina. Science of The Total Environment, 405(1), 338-344.
Hoang, H.-G., Lin, C., Tran, H.-T., Chiang, C.-F., Bui, X.-T., Cheruiyot, N. K., Shern, C.-C., & Lee, C.-W. (2020). Heavy metal contamination trends in surface water and sediments of a river in a highly-industrialized region. Environmental Technology & Innovation, 20, 101043.
Hopke, P. K. (2003). Recent developments in receptor modeling. Journal of Chemometrics, 17(5), 255-265.
Hosono, T., Wang, C.-H., Umezawa, Y., Nakano, T., Onodera, S.-i., Nagata, T., Yoshimizu, C., Tayasu, I., & Taniguchi, M. (2011). Multiple isotope (H, O, N, S and Sr) approach elucidates complex pollution causes in the shallow groundwaters of the Taipei urban area. Journal of Hydrology, 397(1), 23-36.
Hsu, C.-Y., Chiang, H.-C., Chen, M.-J., Chuang, C.-Y., Tsen, C.-M., Fang, G.-C., Tsai, Y.-I., Chen, N.-T., Lin, T.-Y., Lin, S.-L., & Chen, Y.-C. (2017). Ambient PM2.5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact. Science of The Total Environment, 590-591, 204-214.
Hsu, C.-Y., Chiang, H.-C., Lin, S.-L., Chen, M.-J., Lin, T.-Y., & Chen, Y.-C. (2016). Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan. Science of The Total Environment, 541, 1139-1150.
Hsu, S.-C., Chen Liu, S., Jeng, W.-L., K. Chou, C. C., Hsu, R.-T., Huang, Y.-T., & Chen, Y.-W. (2006). Lead isotope ratios in ambient aerosols from Taipei, Taiwan: Identifying long-range transport of airborne Pb from the Yangtze Delta. Atmospheric Environment, 40(28), 5393-5404.
Hsu, S.-C., Liu, S. C., Huang, Y.-T., Lung, S.-C. C., Tsai, F., Tu, J.-Y., & Kao, S.-J. (2008). A criterion for identifying Asian dust events based on Al concentration data collected from northern Taiwan between 2002 and early 2007. Journal of Geophysical Research: Atmospheres, 113(D18).
Hsu, S.-C., Liu, S. C., Jeng, W.-L., Lin, F.-J., Huang, Y.-T., Candice Lung, S.-C., Liu, T.-H., & Tu, J.-Y. (2005). Variations of Cd/Pb and Zn/Pb ratios in Taipei aerosols reflecting long-range transport or local pollution emissions. Science of The Total Environment, 347(1), 111-121.
Hsu, S.-C., Tsai, F., Lin, F.-J., Chen, W.-N., Shiah, F.-K., Huang, J.-C., Chan, C.-Y., Chen, C.-C., Liu, T.-H., Chen, H.-Y., Tseng, C.-M., Hung, G.-W., Huang, C.-H., Lin, S.-H., & Huang, Y.-T. (2013). A super Asian dust storm over the East and South China Seas: Disproportionate dust deposition. Journal of Geophysical Research: Atmospheres, 118(13), 7169-7181.
Hu, X., Sun, Y., Ding, Z., Zhang, Y., Wu, J., Lian, H., & Wang, T. (2014). Lead contamination and transfer in urban environmental compartments analyzed by lead levels and isotopic compositions. Environmental Pollution, 187, 42-48.
Huang, K.-F., Blusztajn, J., Oppo, D. W., Curry, W. B., & Peucker-Ehrenbrink, B. (2012). High-precision and accurate determinations of neodymium isotopic compositions at nanogram levels in natural materials by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9), 1560-1567.
Huang, K.-F., & You, C.-F. (2007). Tracing freshwater plume migration in the estuary after a typhoon event using Sr isotopic ratios. Geophysical Research Letters, 34(2).
Huang, K.-F., You, C.-F., Chung, C.-H., & Lin, I.-T. (2011). Nonhomogeneous seawater Sr isotopic composition in the coastal oceans: A novel tool for tracing water masses and submarine groundwater discharge. Geochemistry, Geophysics, Geosystems, 12(5).
Huang, S.-H., Chang, T.-C., Chien, H.-C., Wang, Z.-S., Chang, Y.-C., Wang, Y.-L., & Hsi, H.-C. (2021). Comprehending the Causes of Presence of Copper and Common Heavy Metals in Sediments of Irrigation Canals in Taiwan. Minerals, 11(4).
Huang, Y., Zhang, S., Chen, Y., Wang, L., Long, Z., Hughes, S. S., Ni, S., Cheng, X., Wang, J., Li, T., Wang, R., & Liu, C. (2020). Tracing Pb and Possible Correlated Cd Contamination in Soils by Using Lead Isotopic Compositions. Journal of Hazardous Materials, 385, 121528.
Huijnen, V., Williams, J., van Weele, M., van Noije, T., Krol, M., Dentener, F., Segers, A., Houweling, S., Peters, W., de Laat, J., Boersma, F., Bergamaschi, P., van Velthoven, P., Le Sager, P., Eskes, H., Alkemade, F., Scheele, R., Nédélec, P., & Pätz, H. W. (2010). The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0. Geosci. Model Dev., 3(2), 445-473.
Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A. M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V. H., Razinger, M., Remy, S., Schulz, M., & Suttie, M. (2019). The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys., 19(6), 3515-3556.
Ito, A. (2015). Atmospheric Processing of Combustion Aerosols as a Source of Bioavailable Iron. Environmental Science & Technology Letters, 2(3), 70-75.
Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167-182.
Jacobson, M. Z. (2014). Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. Journal of Geophysical Research: Atmospheres, 119(14), 8980-9002.
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60-72.
Jeon, S.-k., Kwon, M. J., Yang, J.-s., & Lee, S. (2017). Identifying the source of Zn in soils around a Zn smelter using Pb isotope ratios and mineralogical analysis. Science of The Total Environment, 601-602, 66-72.
Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis (5th ed.).
Jung, C.-C., Chou, C. C. K., Lin, C.-Y., Shen, C.-C., Lin, Y.-C., Huang, Y.-T., Tsai, C.-Y., Yao, P.-H., Huang, C.-R., Huang, W.-R., Chen, M.-J., Huang, S.-H., & Chang, S.-C. (2019). C-Sr-Pb isotopic characteristics of PM2.5 transported on the East-Asian continental outflows. Atmospheric Research, 223, 88-97.
Könczöl, M., Ebeling, S., Goldenberg, E., Treude, F., Gminski, R., Gieré, R., Grobéty, B., Rothen-Rutishauser, B., Merfort, I., & Mersch-Sundermann, V. (2011). Cytotoxicity and Genotoxicity of Size-Fractionated Iron Oxide (Magnetite) in A549 Human Lung Epithelial Cells: Role of ROS, JNK, and NF-κB. Chemical Research in Toxicology, 24(9), 1460-1475.
Keene, W. C., Pszenny, A. A. P., Galloway, J. N., & Hawley, M. E. (1986). Sea-salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research: Atmospheres, 91(D6), 6647-6658.
Kim, K.-H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136-143.
Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J., & Schöpp, W. (2017). Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys., 17(14), 8681-8723.
Klimont, Z., Smith, S. J., & Cofala, J. (2013). The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environmental Research Letters, 8(1), 014003.
Kuo, C.-Y., Lin, C.-Y., Huang, L.-M., Wang, S., Shieh, P.-F., Lin, Y.-R., & Wang, J.-Y. (2010). Spatial variations of the aerosols in river-dust episodes in central Taiwan. Journal of Hazardous Materials, 179(1), 1022-1030.
Kuo, C.-Y., Wang, J.-Y., Chang, S.-H., & Chen, M.-C. (2009). Study of metal concentrations in the environment near diesel transport routes. Atmospheric Environment, 43(19), 3070-3076.
Lahd Geagea, M., Stille, P., Gauthier-Lafaye, F., & Millet, M. (2008). Tracing of Industrial Aerosol Sources in an Urban Environment Using Pb, Sr, and Nd Isotopes. Environmental Science & Technology, 42(3), 692-698.
Land, M., Ingri, J., Andersson, P. S., & Öhlander, B. (2000). Ba/Sr, Ca/Sr and 87Sr/86Sr ratios in soil water and groundwater: implications for relative contributions to stream water discharge. Applied Geochemistry, 15(3), 311-325.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., Weng, G.-H., Lai, H.-Y., & Hsu, S.-P. (2011). The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment, 45(32), 5784-5794.
Lee, C. S. L., Li, X.-D., Zhang, G., Li, J., Ding, A.-J., & Wang, T. (2007). Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, South China—Evidence of the long-range transport of air contaminants. Atmospheric Environment, 41(2), 432-447.
Lee, S., Shin, D., Han, C., Choi, K.-S., Hur, S. D., Lee, J., Byun, D.-S., Kim, Y.-T., & Hong, S. (2019). Characteristic concentrations and isotopic composition of airborne lead at urban, rural and remote sites in western Korea. Environmental Pollution, 254, 113050.
Li, R., Zhang, H., Wang, F., Ren, Y., Jia, S., Jiang, B., Jia, X., Tang, Y., & Tang, M. (2022). Abundance and fractional solubility of phosphorus and trace metals in combustion ash and desert dust: Implications for bioavailability and reactivity. Science of The Total Environment, 816, 151495.
Lin, C.-W., & Yeh, J.-F. (2007). Estimating dust emission from a sandbank on the downstream Jhuoshuei River under strong wind conditions. Atmospheric Environment, 41(35), 7553-7561.
Lin, C.-Y., Lee, Y.-H., Kuo, C.-Y., Chen, W.-C., Sheng, Y.-F., & Su, C.-J. (2018). Impact of river-dust events on air quality of western Taiwan during winter monsoon: Observed evidence and model simulation. Atmospheric Environment, 192, 160-172.
Lin, C.-Y., Liu, S. C., Chou, C. C. K., Huang, S.-J., Liu, C.-M., Kuo, C.-H., & Young, C.-Y. (2005). Long-range transport of aerosols and their impact on the air quality of Taiwan. Atmospheric Environment, 39(33), 6066-6076.
Lin, L.-Q., Lu, H.-Y., Pi, J.-L., Liou, T.-S., Chen, W.-F., & Hsieh, P.-S. (2021). A comparison of atmospheric geochemistry through lichens from volcanic and non-volcanic areas, north Taiwan. Journal of Earth System Science, 130(4), 228.
Lin, Y.-C., Hsu, S.-C., Lin, S.-H., & Huang, Y.-T. (2020). Metallic elements emitted from industrial sources in Taiwan: Implications for source identification using airborne PM. Atmospheric Pollution Research, 11(4), 766-775.
Liu, T.-H., Tsai, F., Hsu, S.-C., Hsu, C.-W., Shiu, C.-J., Chen, W.-N., & Tu, J.-Y. (2009). Southeastward transport of Asian dust: Source, transport and its contributions to Taiwan. Atmospheric Environment, 43(2), 458-467.
Lohmann, U., & Feichter, J. (2005). Global indirect aerosol effects: a review. Atmos. Chem. Phys., 5(3), 715-737.
Longman, J., Veres, D., Ersek, V., Phillips, D. L., Chauvel, C., & Tamas, C. G. (2018). Quantitative assessment of Pb sources in isotopic mixtures using a Bayesian mixing model. Scientific Reports, 8(1), 6154.
Lyu, Y., Guo, H., Cheng, T., & Li, X. (2018). Particle Size Distributions of Oxidative Potential of Lung-Deposited Particles: Assessing Contributions from Quinones and Water-Soluble Metals. Environmental Science & Technology, 52(11), 6592-6600.
Mahowald, N. M., Hamilton, D. S., Mackey, K. R. M., Moore, J. K., Baker, A. R., Scanza, R. A., & Zhang, Y. (2018). Aerosol trace metal leaching and impacts on marine microorganisms. Nature Communications, 9(1), 2614.
Majestic, B. J., Anbar, A. D., & Herckes, P. (2009). Stable Isotopes as a Tool to Apportion Atmospheric Iron. Environmental Science & Technology, 43(12), 4327-4333.
Maxwell-Meier, K., Weber, R., Song, C., Orsini, D., Ma, Y., Carmichael, G. R., & Streets, D. G. (2004). Inorganic composition of fine particles in mixed mineral dust–pollution plumes observed from airborne measurements during ACE-Asia. Journal of Geophysical Research: Atmospheres, 109(D19).
Mazzei, F., D′Alessandro, A., Lucarelli, F., Nava, S., Prati, P., Valli, G., & Vecchi, R. (2008). Characterization of particulate matter sources in an urban environment. Science of The Total Environment, 401(1), 81-89.
Merešová, J., Florek, M., Holý, K., Ješkovský, M., Sýkora, I., Frontasyeva, M. V., Pavlov, S. S., & Bujdoš, M. (2008). Evaluation of elemental content in air-borne particulate matter in low-level atmosphere of Bratislava. Atmospheric Environment, 42(34), 8079-8085.
Ming, L. L. (2016). Fine atmospheric particles (PM2.5) in large city clusters, China : chemical compositions, temporal-spatial variations and regional transport. The Hong Kong Polytechnic University. Retrieved from https://theses.lib.polyu.edu.hk/handle/200/9004
Mitra, A., Sen, I. S., Pandey, S. K., Velu, V., Reisberg, L., Bizimis, M., Cloquet, C., & Nizam, S. (2021). Lead Isotope Evidence for Enhanced Anthropogenic Particle Transport to the Himalayas during Summer Months. Environmental Science & Technology, 55(20), 13697-13708.
Moran, J., NaSuwan, C., & Poocharoen, O.-O. (2019). The haze problem in Northern Thailand and policies to combat it: A review. Environmental Science & Policy, 97, 1-15.
Mukai, H., Tanaka, A., Fujii, T., & Nakao, M. (1994). Lead isotope ratios of airborne particulate matter as tracers of long-range transport of air pollutants around Japan. Journal of Geophysical Research: Atmospheres, 99(D2), 3717-3726.
Négrel, P., & Petelet-Giraud, E. (2012). Isotopic evidence of lead sources in Loire River sediment. Applied Geochemistry, 27(10), 2019-2030.
Négrel, P., Petelet-Giraud, E., Barbier, J., & Gautier, E. (2003). Surface water–groundwater interactions in an alluvial plain: Chemical and isotopic systematics. Journal of Hydrology, 277(3), 248-267.
Nakano, T. (2016). Potential uses of stable isotope ratios of Sr, Nd, and Pb in geological materials for environmental studies. Proceedings of the Japan Academy, Series B, 92(6), 167-184.
Nezat, C. A., Blum, J. D., & Driscoll, C. T. (2010). Patterns of Ca/Sr and 87Sr/86Sr variation before and after a whole watershed CaSiO3 addition at the Hubbard Brook Experimental Forest, USA. Geochimica et Cosmochimica Acta, 74(11), 3129-3142.
Niu, L., Li, J., Luo, X., Fu, T., Chen, O., & Yang, Q. (2021). Identification of heavy metal pollution in estuarine sediments under long-term reclamation: Ecological toxicity, sources and implications for estuary management. Environmental Pollution, 290, 118126.
Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2), 111-126.
Pacyna, J. M., & Pacyna, E. G. (2001). An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environmental Reviews, 9(4), 269-298.
Pacyna, J. M., Pacyna, E. G., & Aas, W. (2009). Changes of emissions and atmospheric deposition of mercury, lead, and cadmium. Atmospheric Environment, 43(1), 117-127.
Palleschi, S., Rossi, B., Armiento, G., Montereali, M. R., Nardi, E., Mazziotti Tagliani, S., Inglessis, M., Gianfagna, A., & Silvestroni, L. (2018). Toxicity of the readily leachable fraction of urban PM2.5 to human lung epithelial cells: Role of soluble metals. Chemosphere, 196, 35-44.
Paris, R., Desboeufs, K. V., Formenti, P., Nava, S., & Chou, C. (2010). Chemical characterisation of iron in dust and biomass burning aerosols during AMMA-SOP0/DABEX: implication for iron solubility. Atmos. Chem. Phys., 10(9), 4273-4282.
Peltier, R. E., Hsu, S.-I., Lall, R., & Lippmann, M. (2009). Residual oil combustion: a major source of airborne nickel in New York City. Journal of Exposure Science & Environmental Epidemiology, 19(6), 603-612.
Peters, A., Dockery Douglas, W., Muller James, E., & Mittleman Murray, A. (2001). Increased Particulate Air Pollution and the Triggering of Myocardial Infarction. Circulation, 103(23), 2810-2815.
Pin, C., & Gannoun, A. (2017). Integrated Extraction Chromatographic Separation of the Lithophile Elements Involved in Long-Lived Radiogenic Isotope Systems (Rb–Sr, U–Th–Pb, Sm–Nd, La–Ce, and Lu–Hf) Useful in Geochemical and Environmental Sciences. Analytical Chemistry, 89(4), 2411-2417.
Pio, C. A., Legrand, M., Alves, C. A., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sanchez-Ochoa, A., & Gelencsér, A. (2008). Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment, 42(32), 7530-7543.
Pope Iii, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. JAMA, 287(9), 1132-1141.
Porcelli, D., & Baskaran, M. (2012). An Overview of Isotope Geochemistry in Environmental Studies. In M. Baskaran (Ed.), Handbook of Environmental Isotope Geochemistry: Vol I (pp. 11-32). Berlin, Heidelberg: Springer Berlin Heidelberg.
Putri, M. S., Lou, C.-H., Syai’in, M., Ou, S.-H., & Wang, Y.-C. (2018). Long-Term River Water Quality Trends and Pollution Source Apportionment in Taiwan. Water, 10(10).
Römkens, P. F., Guo, H.-Y., Chu, C.-L., Liu, T.-S., Chiang, C.-F., & Koopmans, G. F. (2009). Characterization of soil heavy metal pools in paddy fields in Taiwan: chemical extraction and solid-solution partitioning. Journal of Soils and Sediments, 9(3), 216-228.
Rauch, J. N., & Pacyna, J. M. (2009). Earth′s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles. Global Biogeochemical Cycles, 23(2).
Rosman, K. J. R., Chisholm, W., Boutron, C. F., Candelone, J. P., & Görlach, U. (1993). Isotopic evidence for the source of lead in Greenland snows since the late 1960s. Nature, 362(6418), 333-335.
Salameh, D., Detournay, A., Pey, J., Pérez, N., Liguori, F., Saraga, D., Bove, M. C., Brotto, P., Cassola, F., Massabò, D., Latella, A., Pillon, S., Formenton, G., Patti, S., Armengaud, A., Piga, D., Jaffrezo, J. L., Bartzis, J., Tolis, E., Prati, P., Querol, X., Wortham, H., & Marchand, N. (2015). PM2.5 chemical composition in five European Mediterranean cities: A 1-year study. Atmospheric Research, 155, 102-117.
Salifu, M., Aiglsperger, T., Hällström, L., Martinsson, O., Billström, K., Ingri, J., Dold, B., & Alakangas, L. (2018). Strontium (87Sr/86Sr) isotopes: A tracer for geochemical processes in mineralogically-complex mine wastes. Applied Geochemistry, 99, 42-54.
Sall, M. L., Diaw, A. K. D., Gningue-Sall, D., Efremova Aaron, S., & Aaron, J.-J. (2020). Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. Environmental Science and Pollution Research, 27(24), 29927-29942.
Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics : from air pollution to climate change.
Sen, I. S., & Peucker-Ehrenbrink, B. (2012). Anthropogenic Disturbance of Element Cycles at the Earth’s Surface. Environmental Science & Technology, 46(16), 8601-8609.
Shepherd, T. J., Chenery, S. R. N., Pashley, V., Lord, R. A., Ander, L. E., Breward, N., Hobbs, S. F., Horstwood, M., Klinck, B. A., & Worrall, F. (2009). Regional lead isotope study of a polluted river catchment: River Wear, Northern England, UK. Science of The Total Environment, 407(17), 4882-4893.
Shimamura, T., Iijima, S., Iwashita, M., Hattori, M., & Takaku, Y. (2007). Lead isotopes in rainfall collected by a sequential sampler in suburban Tokyo. Atmospheric Environment, 41(18), 3797-3805.
Sigsgaard, T., Forsberg, B., Annesi-Maesano, I., Blomberg, A., Bølling, A., Boman, C., Bønløkke, J., Brauer, M., Bruce, N., Héroux, M.-E., Hirvonen, M.-R., Kelly, F., Künzli, N., Lundbäck, B., Moshammer, H., Noonan, C., Pagels, J., Sallsten, G., Sculier, J.-P., & Brunekreef, B. (2015). Health impacts of anthropogenic biomass burning in the developed world. European Respiratory Journal, 46(6), 1577.
Simonetti, A., Gariépy, C., & Carignan, J. (2000). Pb and Sr isotopic evidence for sources of atmospheric heavy metals and their deposition budgets in northeastern North America. Geochimica et Cosmochimica Acta, 64(20), 3439-3452.
Singh, A., Chou, C. C. K., Chang, S.-Y., Chang, S.-C., Lin, N.-H., Chuang, M.-T., Pani, S. K., Chi, K. H., Huang, C.-H., & Lee, C.-T. (2020). Long-term (2003–2018) trends in aerosol chemical components at a high-altitude background station in the western North Pacific: Impact of long-range transport from continental Asia. Environmental Pollution, 265, 114813.
Smedley, P. L., & Kinniburgh, D. G. (2017). Molybdenum in natural waters: A review of occurrence, distributions and controls. Applied Geochemistry, 84, 387-432.
Souto-Oliveira, C. E., Babinski, M., Araújo, D. F., & Andrade, M. F. (2018). Multi-isotopic fingerprints (Pb, Zn, Cu) applied for urban aerosol source apportionment and discrimination. Science of The Total Environment, 626, 1350-1366.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., & Ngan, F. (2016). NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society, 96(12), 2059-2077.
Stock, B. C., Jackson, A. L., Ward, E. J., Parnell, A. C., Phillips, D. L., & Semmens, B. X. (2018). Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ, 6, e5096.
Stock, B. C., & Semmens, B. X. (2016). MixSIAR GUI User Manual. Version 3.1.
Suvarapu, L. N., & Baek, S.-O. (2016). Determination of heavy metals in the ambient atmosphere: A review. Toxicology and Industrial Health, 33(1), 79-96.
Tan, M. G., Zhang, G. L., Li, X. L., Zhang, Y. X., Yue, W. S., Chen, J. M., Wang, Y. S., Li, A. G., Li, Y., Zhang, Y. M., & Shan, Z. C. (2006). Comprehensive Study of Lead Pollution in Shanghai by Multiple Techniques. Analytical Chemistry, 78(23), 8044-8050.
Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241-265.
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Experientia supplementum (2012), 101, 133-164.
Tian, H. Z., Zhu, C. Y., Gao, J. J., Cheng, K., Hao, J. M., Wang, K., Hua, S. B., Wang, Y., & Zhou, J. R. (2015). Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies. Atmos. Chem. Phys., 15(17), 10127-10147.
Vanhaecke, F. a. D., P. (2010). Isotopic Analysis: Wiley-VCH.
Viana, M., Amato, F., Alastuey, A., Querol, X., Moreno, T., García Dos Santos, S., Herce, M. D., & Fernández-Patier, R. (2009). Chemical Tracers of Particulate Emissions from Commercial Shipping. Environmental Science & Technology, 43(19), 7472-7477.
Wang, K. L., Lo, Y. M., Chung, S. L., Lo, C. H., Hsu, S. K., Yang, H. J., & Shinjo, R. (2012). Age and geochemical features of dredged basalts from offshore SW Taiwan. The coincidence of intra-plate magmatism with the spreading South China Sea, 23(6), 657-669.
Wang, Q., Ma, Y., Tan, J., Zheng, N., Duan, J., Sun, Y., He, K., & Zhang, Y. (2015). Characteristics of size-fractionated atmospheric metals and water-soluble metals in two typical episodes in Beijing. Atmospheric Environment, 119, 294-303.
Watson, J. G., Chow, J. C., Lu, Z., Fujita, E. M., Lowenthal, D. H., Lawson, D. R., & Ashbaugh, L. L. (1994). Chemical Mass Balance Source Apportionment of PM10 during the Southern California Air Quality Study. Aerosol Science and Technology, 21(1), 1-36.
Weckwerth, G. (2001). Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmospheric Environment, 35(32), 5525-5536.
Weiss, D. J., Kober, B., Dolgopolova, A., Gallagher, K., Spiro, B., Le Roux, G., Mason, T. F. D., Kylander, M., & Coles, B. J. (2004). Accurate and precise Pb isotope ratio measurements in environmental samples by MC-ICP-MS. International Journal of Mass Spectrometry, 232(3), 205-215.
Widory, D., Liu, X., & Dong, S. (2010). Isotopes as tracers of sources of lead and strontium in aerosols (TSP & PM2.5) in Beijing. Atmospheric Environment, 44(30), 3679-3687.
Wiederhold, J. G. (2015). Metal Stable Isotope Signatures as Tracers in Environmental Geochemistry. Environmental Science & Technology, 49(5), 2606-2624.
Winter, B. L., Clark, D. L., & Johnson, C. M. (1997). Late Cenozoic Sr isotope evolution of the Arctic Ocean: constraints on water mass exchange with the lower latitude oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 44(8), 1531-1542.
Winton, V. H. L., Edwards, R., Bowie, A. R., Keywood, M., Williams, A. G., Chambers, S. D., Selleck, P. W., Desservettaz, M., Mallet, M. D., & Paton-Walsh, C. (2016). Dry season aerosol iron solubility in tropical northern Australia. Atmos. Chem. Phys., 16(19), 12829-12848.
World Health Organization. Regional Office for, E. (2006). Air quality guidelines global update 2005 : particulate matter, ozone, nitrogen dioxide and sulfur dioxide: Copenhagen : WHO Regional Office for Europe.
Wu, P.-C., & Huang, K.-F. (2021). Tracing local sources and long-range transport of PM10 in central Taiwan by using chemical characteristics and Pb isotope ratios. Scientific Reports, 11(1), 7593.
Wu, Y.-S., & Hung, W.-C. (2013). Heavy Metal Pollution in Surface Soils of Five Characteristic Sampling Sites in Central Taiwan. Environmental Forensics, 14(2), 97-102.
Xu, H. M., He, K. L., Feng, R., Shen, Z. X., Cao, J. J., Liu, S. X., Ho, K. F., Huang, R. J., Guinot, B., Wang, Q. Y., Zhou, J. M., Shen, M. X., Xiao, S., Zhou, B. H., & Sonke, J. E. (2020). Metallic elements and Pb isotopes in PM2.5 in three Chinese typical megacities: spatial distribution and source apportionment. Environmental Science: Processes & Impacts, 22(8), 1718-1730.
Yang, F., Tan, J., Zhao, Q., Du, Z., He, K., Ma, Y., Duan, F., Chen, G., & Zhao, Q. (2011). Characteristics of PM2.5 speciation in representative megacities and across China. Atmos. Chem. Phys., 11(11), 5207-5219.
Yao, P.-H. (2015a). Lead Isotopic Fingerprinting Applied to the Forensic Study on Soil and Rice. National Taiwan University.
Yao, P.-H., Shyu, G.-S., Chang, Y.-F., Chou, Y.-C., Shen, C.-C., Chou, C.-S., & Chang, T.-K. (2015b). Lead Isotope Characterization of Petroleum Fuels in Taipei, Taiwan. International Journal of Environmental Research and Public Health, 12(5).
Zdanowicz, C., Hall, G., Vaive, J., Amelin, Y., Percival, J., Girard, I., Biscaye, P., & Bory, A. (2006). Asian dustfall in the St. Elias Mountains, Yukon, Canada. Geochimica et Cosmochimica Acta, 70(14), 3493-3507.
Zhang, R., Cao, J., Tang, Y., Arimoto, R., Shen, Z., Wu, F., Han, Y., Wang, G., Zhang, J., & Li, G. (2014). Elemental profiles and signatures of fugitive dusts from Chinese deserts. Science of The Total Environment, 472, 1121-1129.
Zhang, X. Y., Arimoto, R., & An, Z. S. (1997). Dust emission from Chinese desert sources linked to variations in atmospheric circulation. Journal of Geophysical Research: Atmospheres, 102(D23), 28041-28047.
Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M., & Sun, J. Y. (2012). Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys., 12(2), 779-799.
Zheng, J., Tan, M., Shibata, Y., Tanaka, A., Li, Y., Zhang, G., Zhang, Y., & Shan, Z. (2004). Characteristics of lead isotope ratios and elemental concentrations in PM10 fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline. Atmospheric Environment, 38(8), 1191-1200.
Zhong, Q., Zhou, Y., Tsang, D. C. W., Liu, J., Yang, X., Yin, M., Wu, S., Wang, J., Xiao, T., & Zhang, Z. (2020). Cadmium isotopes as tracers in environmental studies: A review. Science of The Total Environment, 736, 139585.
Zhu, C., Tian, H., & Hao, J. (2020). Global anthropogenic atmospheric emission inventory of twelve typical hazardous trace elements, 1995–2012. Atmospheric Environment, 220, 117061.
Zieliński, M., Dopieralska, J., Belka, Z., Walczak, A., Siepak, M., & Jakubowicz, M. (2016). Sr isotope tracing of multiple water sources in a complex river system, Noteć River, central Poland. Science of The Total Environment, 548-549, 307-316.
指導教授 黃國芳 潘任飛(Kuo-Fang Huang Iam-Fei Pun) 審核日期 2022-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明