博碩士論文 109523020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.149.255.60
姓名 張楷珉(KAI-MIN JHANG)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 以NeighCoef演算法對FMCW chirp雷達訊號進行降雜訊
相關論文
★ 運用SIFT特徵進行光學影像目標識別★ 語音關鍵詞辨識擷取系統
★ 適用於筆記型電腦之WiMAX天線研究★ 應用於凱氏天線X頻段之低雜訊放大器設計
★ 適用於802.11a/b/g WLAN USB dongle曲折型單極天線設計改良★ 應用於行動裝置上的雙頻(GPS/BT)天線
★ SDH設備單體潛伏性障礙效能分析與維運技術★ 無風扇嵌入式觸控液晶平板系統小型化之設計
★ 自動化RFID海關通關系統設計★ 發展軟體演算實現線性調頻連續波雷達測距系統之設計
★ 近場通訊之智慧倉儲管理★ 在Android 平台上實現NFC 室內定位
★ Android應用程式開發之電子化設備巡檢★ 鏈路預算估測預期台灣衛星通訊的發展
★ 在中上衰落通道中分集結合技術之二階統計特性★ 先進長程演進系統中載波聚合技術的初始同步
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文使用了同致電子提供的超聲波頻率調變連續波雷達(Ultrasound FMCW radar)進行物體短距離的量測,硬體設備以及晶片還有數據都會在內容提及,接著以NeighCoef的方式將收集的訊號做雜訊的處理,本論文總共分五個部份。
本論文的第一部分會先做基本敘述,介紹關於研究的背景、研究動機以及論文大綱,第二部份會介紹關於FMCW chirp系統,包括系統介紹、訊號模擬、雷達介紹以及FMCW系統如何測量距離,本章節都有相關的介紹,第三部分介紹NeighCoef是什麼,此方法的理論背景以及此方法如何處理訊號已達到雜訊降低的目的,在本章節會有完整的公式敘述,第四部分進行模擬以及比較訊號前後差別,會附上各種不同的距離數據,從90cm到150cm每30cm為一個間隔,第五部分會做一個總結,裡面包括對模擬結果的討論以及還有什麼問題是未來需要克服以及還有什麼地方可以深入去研究。
摘要(英) This paper uses the Ultrasound FMCW radar provided by Tongzhi Electronics for short-distance measurement of objects. Hardware equipment, chips and data will be mentioned in the content, and then collected in the way of NeighCoef. This paper is divided into five parts in total.
The first part of this thesis will give a basic description, introduce the background of the research, research motivation and the outline of the thesis, the second part will introduce the FMCW chirp system, including system introduction, signal simulation, radar introduction and how the FMCW system measures distance, This chapter has related introductions. The third part introduces what NeighCoef is, the theoretical background of this method and how this method processes the signal to achieve the purpose of reducing noise. In this chapter, there will be a complete formula description, and the fourth part will simulate As well as comparing the difference before and after the signal, various distance data will be attached, from 90cm to 150cm every 30cm is an interval, the fifth part will make a summary, which includes a discussion of the simulation results and what problems still need to be overcome in the future and Where else can we dig deeper.
關鍵字(中) ★ 降雜訊
★ 雷達訊號
關鍵字(英) ★ FMCW
論文目次 摘要 - i -
Abstract - ii -
目錄 - iii -
圖目錄 - vi -
表目錄 - v -
第一章 緒論 - 1 -
1.1 研究背景與動機 - 1 -
1.2 研究目的 - 2 -
1.3 論文大綱 - 4 -
第二章 連續波調變 - 5 -
2.1 雷達分類 - 5 -
2.2 FMCW雷達系統 - 7 -
2.3 FMCW訊號模型 - 8 -
2.4 FMCW距離測量 - 10 –
2.5 Chirp訊號 - 12 –
第三章 即時功率分配演算法 - 14 –
3.1 理論背景 - 14 -
3.2 雜訊等級估計 - 14 -
3.3 時頻降雜訊 - 17 -
第四章 模擬結果與討論 - 20 -
第五章 結論 - 31 -
參考文獻 - 32 -
參考文獻 [1] Donoho, D.L, Johnstone, I.M., 1994. Ideal spatial adaptation by wavelet shrinkage.
Biometrika 81, 425-455.
[2] Donoho, D.L, Johnstone, I.M., 1995. Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90, 1200-1224
[3] Stein, C., 1981. Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9, 1135–1151.
[4] Cai, T., Silverman, B.W., 2001. Incorporation information on neighboring coefficients into wavelet estimation. Sankhya 63, 127–148
[5] Cai, T., Zhou, H., 2009. A data-driven block thresholding approach to wavelet estimation. Ann. Stat. 37, 569–595. http://dx.doi.org/10.1214/07-AOS538.
[6] Ephraim, Y., Malah, D., 1984. Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator, IEEE Trans. Acoust. Speech
Signal Process 32, 1109-1121.
[7] Cai, T., Zhou, H., 2009. A data-driven block thresholding approach to wavelet
estimation. Ann. Stat. 37, 569-595. http://dx.doi.org/10.1214/07-AOS538.
[8] H. H. Meinel, "Automotive millimeter wave radar," Digest of 2000 Topical Symposium on Millimeter Waves, Yokosuka, Japan, March 2000.
[9] H.-W. Huang, Front-End Circuit Design and Integration of 24-GHz FMCW Radar System, National Chiao Yung University, Mater thesis, Aug 2007.
[10] S.Mostafa Mousavi, Adaptive noise estimation and suppression for inproving microseismic event detection, CERI, Universiity of memphis, July 2016.
[11] I. Bilik, O. Longman, S. Villeval and J. Tabrikian, "The Rise of Radar for Autonomous Vehicles: Signal Processing Solutions and Future Research Directions," in IEEE Signal Processing Magazine, vol. 36, no. 5, pp. 20-31, Sept. 2019, doi: 10.1109/MSP.2019.2926573.
[12] Rohling, H. Milestones in radar and the success story of automotive radar systems. 11-th INTERNATIONAL RADAR SYMPOSIUM, 2010, pp. 1–6.
[13] Wenger, J. Automotive radar - status and perspectives. IEEE Compound Semiconductor Integrated Circuit Symposium CSIC ′05. 2005, pp.21 pp.-24.
[14] Hasch, J.; Topak, E.; Schnabel, R.; Zwick, T.; Weigel, R.; Waldschmidt, C. Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 3, pp. 845-860.
[15] Kukkala, V.K.; Tunnell, J.; Pasricha, S.; Bradley, T. Advanced Driver Assistance Systems: A Path Toward Autonomous Vehicles. IEEE Consumer Electronics Magazine, 2015, vol. 7, no. 5, pp. 18-25.
[16] Askari, R., Siahkoohi, H.R., 2008. Ground roll attenuation using the S and x-f-k transforms. Geophys. Prospect. 56, 105–114. http://dx.doi.org/10.1111/j.1365-2478.2007.00659.x.
[17] Astudillo, R.F., Orglmeister, R., 2013. ComputingMMSE estimates and residual uncertainty directly in the feature domain of ASR using STFT domain speech distortion models. IEEE Trans. Speech Audio Process. 21, 1023–1034.
[18] Bekara, M., van der Baan, M., 2009. Random and coherent noise attenuation by empirical mode decomposition. Geophysics 74, V89–V98. http://dx.doi.org/10.1190/1.3157244.
[19] Bogiatzis, P., Ishii, M., 2015. Continuous wavelet decomposition algorithms for automatic detection of compressional- and shear-wave arrival times. Bull. Seismol. Soc. Am. 105, 1628–1641. http://dx.doi.org/10.1785/0120140267.
[20] Bonar, D., Sacchi, M., 2012. Denoising seismic data using the nonlocal means algorithm. Geophysics 77, A5–A8.
[21] 無人駕駛車益處, https://www.viatech.com/tw/2019/06/the-benefits-of-self-drivintw/#:~:text=%E5%8D%B3%E4%BD%BF%E6%B1%BD%E8%BB%8A%E4BB%8D%E7%84%B6%E4%BD%BF%E7%94%A8%E9%83%A8%E5%88%86,%E5%B0%8D%E7%92%B0%E5%A2%83%E6%9C%89%E7%9B%8A%E3%80%82
指導教授 林嘉慶 審核日期 2022-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明