參考文獻 |
[1] Andrew J Davison. Futuremapping: The computational structure of spatial ai systems. arXiv preprint arXiv:1803.11288, 2018.
[2] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon. Bundle adjustment - A modern synthesis. In Bill Triggs, Andrew Zisserman, and Richard Szeliski, editors, Vision Algorithms: Theory and Practice, volume 1883 of Lecture Notes in Computer Science, pages 298–372. Springer, 1999.
[3] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.
[4] Yu Chen, Yisong Chen, and Guoping Wang. Bundle adjustment revisited. arXiv
preprint arXiv:1912.03858, 2019.
[5] Tetsuya Tanaka, Yukihiro Sasagawa, and Takayuki Okatani. Learning To Bundle- Adjust: A Graph Network Approach to Faster Optimization of Bundle Adjustment for Vehicular SLAM. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 6250–6259, October 2021.
[6] Joseph Ortiz, Mark Pupilli, Stefan Leutenegger, and Andrew J Davison. Bundle adjustment on a graph processor. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2416–2425, 2020.
[7] Andrew J Davison and Joseph Ortiz. Futuremapping 2: Gaussian belief propagation for spatial ai. arXiv preprint arXiv:1910.14139, 2019.
[8] Bin Li and Yik-Chung Wu. Convergence analysis of gaussian belief propagation under high-order factorization and asynchronous scheduling. IEEE Transactions on Signal Processing, 67(11):2884–2897, 2019.
[9] Dmitry M Malioutov, Jason K Johnson, and Alan S Willsky. Walk-sums and be- lief propagation in gaussian graphical models. The Journal of Machine Learning Research, 7:2031–2064, 2006.
[10] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.
[11] Garoe Dorta, Sara Vicente, Lourdes Agapito, Neill D.F. Campbell, and Ivor Simp- son. Structured uncertainty prediction networks. Proceedings of the IEEE Confer- ence on Computer Vision and Pattern Recognition, pages 5477–5485, 2018.
[12] Raul Mur-Artal and Juan D. Tardo ́s. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robotics, 33(5):1255– 1262, 2017.
[13] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The KITTI dataset. Int. J. Robotics Res., 32(11):1231–1237, 2013.
[14] Andrew J Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse. Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence, 29(6):1052–1067, 2007.
[15] Javier Civera, Andrew J Davison, and JM Martinez Montiel. Inverse depth parametrization for monocular slam. IEEE transactions on robotics, 24(5):932–945, 2008.
[16] Hauke Strasdat, Jose ́ MM Montiel, and Andrew J Davison. Visual slam: why filter? Image and Vision Computing, 30(2):65–77, 2012.
[17] Georg Klein and David Murray. Parallel tracking and mapping for small ar workspaces. In 2007 6th IEEE and ACM international symposium on mixed and augmented reality, pages 225–234. IEEE, 2007.
[18] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics, 31(5):1147–1163, 2015.
[19] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains. In Proceedings. 2005 IEEE international joint conference on neural networks, volume 2, pages 729–734, 2005.
[20] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Ala ́n Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular fingerprints. Advances in neural information processing systems, 28, 2015.
[21] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks for learning about objects, relations and physics. Advances in neural information processing systems, 29, 2016.
[22] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.
[23] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for quantum chemistry. In International conference on machine learning, pages 1263–1272. PMLR, 2017.
[24] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7794–7803, 2018.
[25] Siddharth Choudhary, Shubham Gupta, and PJ Narayanan. Practical time bundle adjustment for 3d reconstruction on the gpu. In European Conference on Computer Vision, pages 423–435. Springer, 2010.
[26] Changchang Wu, Sameer Agarwal, Brian Curless, and Steven M Seitz. Multicore bundle adjustment. In CVPR 2011, pages 3057–3064. IEEE, 2011.
[27] Judea Pearl. Probabilistic reasoning in intelligent systems, volume 88. Elsevier, 2014.
[28] Joseph Ortiz, Talfan Evans, and Andrew J. Davison. A visual introduction to gaussian belief propagation. arXiv preprint arXiv:2107.02308, 2021.
[29] Brian C Hall. Lie groups, Lie algebras, and representations: an elementary introduction. Springer, 2015.
[30] Ryan M Eustice, Hanumant Singh, and John J Leonard. Exactly sparse delayed-state filters for view-based slam. IEEE Transactions on Robotics, 22(6):1100–1114, 2006.
[31] Sen Wang, Ronald Clark, Hongkai Wen, and Niki Trigoni. DeepVO: Towards end-to-end visual odometry with deep recurrent convolutional neural networks. In 2017 IEEE International Conference on Robotics and Automation, ICRA 2017, Singapore, Singapore, May 29 - June 3, 2017, pages 2043–2050. IEEE, 2017.
[32] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An empirical evaluation of deep architectures on problems with many factors of variation. Proceedings of the 24th international conference on Machine learn- ing - ICML ’07, pages 473–480, 2007.
[33] Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics, pages 492–518. Springer, 1992. |