博碩士論文 109423041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.138.118.215
姓名 林元復(Jonathan Lin)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 應用案例式推理與機器學習於軟體開發風險之檢索
(Applying Case-Based Reasoning and Machine Learning to Risk Retrieval of Software Development)
相關論文
★ 專案管理的溝通關鍵路徑探討─以某企業軟體專案為例★ 運用並探討會議流如何促進敏捷發展過程中團隊溝通與文件化:以T銀行系統開發為例
★ 專案化資訊服務中人力連續派遣決策模式之研究─以高鐵行控資訊設備維護為例★ 以組織正義觀點介入案件指派決策之研究
★ 應用協調理論建立系統軟體測試中問題改善之協作流程★ 應用案例式推理於問題管理系統之研究 -以筆記型電腦產品為例
★ 運用限制理論於多專案開發模式的人力資源配置之探討★ 應用會議流方法於軟體專案開發之個案研究:以翰昇科技公司為例
★ 多重專案、多期再規劃的軟體開發接案決策模式:以南亞科技資訊部門為例★ 會議導向敏捷軟體開發及系統設計:以大學畢業專題為例
★ 一種基於物件、屬性導向之變更影響分析方法於差異化產品設計★ 會議流方法對大學畢業專題的團隊合作品質影響之實驗研究
★ 實施敏捷式發展法於大學部畢業專題之 行動研究 – 以中央大學資管系為例★ 建立一個用來評核自然語言需求品質的線上資訊系統
★ 結合本體論與模糊分析網路程序法於軟體測試之風險與風險關聯辨識★ 在軟體反向工程中針對UML結構模型圖之線上品質評核系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 現今軟體開發環境隨著資訊科技的快速發展,開發團隊需在有限的時間內產出符合客戶需求的產品,而提高生產效率及品質則為提升其市場競爭力之關鍵因素。然而,軟體專案本身工作極為複雜,在開發過程中存在許多不確定性,且軟體開發過程依靠相關人員的知識與互動。因此對於過程中知識的重複利用相當重要,在過程中導入風險管理可以使軟體專案的最終成果更加完善。本研究針對軟體開發中風險案例的檢索工作,以實務角度出發,開發出一套Web-based之軟體開發風險檢索系統,並透過實際的風險案例來說明及展示系統的操作。系統應用案例式推理以發展風險管理知識重用的流程,並結合機器學習模型來檢索過往相似的風險案例,根據檢索的結果提出合適的風險解決方法做為專案人員決策之參考。在完成系統開發後,本研究為確保系統之有效性,以問卷調查及使用者訪談的方式來驗證系統的效能。結果顯示,使用者對於系統的成效大多數都有正面的評價。
摘要(英) Nowadays, with the rapid development of information technology, development teams need to produce products that meet the requirements of customers in a limited time, and improving production efficiency and quality is the key factor to enhance their competitiveness in the market. However, the software project is extremely complex and there are many uncertainties in the software development process, besides, the software development process relies on the knowledge and interaction of related personnel. Therefore, it is important to reuse the knowledge in the development process, and the implementation of risk management in the process can improve the final outcome of the software project.
In this research, a Web-based software development risk retrieval system is developed from a practical perspective, and the operation of the system is illustrated and demonstrated through actual risk cases. The system applies case-based reasoning to develop a process of reusing the knowledge of risk management, and combines machine learning models to retrieve similar risk cases in the past, providing appropriate risk solutions based on the retrieval results as a reference for project team members to make decisions. After the system was developed, the system was verified by questionnaire and user interviews to ensure the effectiveness of the system. The results showed that most of the users had positive opinions about the effectiveness of the system.
關鍵字(中) ★ 軟體開發
★ 風險管理
★ 風險檢索
★ 案例式推理
★ 機器學習
關鍵字(英) ★ Software Development
★ Risk Management
★ Risk Retrieval
★ Case-based Reasoning
★ Machine Learning
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
一、 緒論 1
1-1研究背景 1
1-2研究問題與動機 2
1-3研究目的 3
1-4研究範圍與假設 4
1-5研究架構 5
二、 文獻探討 6
2-1 軟體專案風險管理 6
2-2 案例式推理(Case-based reasoning) 8
2-3 機器學習(Machine Learning) 11
三、 系統設計 13
3-1 系統架構 13
3-2資料前處理(Data Preprocessing) 14
3-3 案例式推理 19
3-3-1 案例相似度計算與案例檢索 20
3-3-2 案例重用、案例修正與案例保留 21
四、 系統實作與展示 22
4-1 系統開發環境 22
4-2 系統展示 23
五、 系統成果與討論 33
5-1 系統成效分析 33
5-1-1 問卷設計 34
5-1-2 問卷結果 36
5-2 使用者訪談 39
5-2-1 訪談設計 39
5-2-1 訪談結果 40
六、 結論與未來發展 48
6-1 研究貢獻 48
6-2 研究限制與未來發展 49
參考文獻 50
參考文獻 Aamodt, A., & Plaza, E. (1994). Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI Communications, 7(1), 39–59. https://doi.org/10.3233/AIC-1994-7104
Abioye, T. E., Arogundade, O. T., Misra, S., Akinwale, A. T., & Adeniran, O. J. (2020). Toward ontology-based risk management framework for software projects: An empirical study. Journal of Software: Evolution and Process, 32(12), e2269. https://doi.org/10.1002/smr.2269
Ahn, T., Ryu, S., & Han, I. (2007). The impact of Web quality and playfulness on user acceptance of online retailing. Information & Management, 44(3), 263–275. https://doi.org/10.1016/j.im.2006.12.008
Aizawa, A. (2003). An information-theoretic perspective of tf–idf measures. Information Processing & Management, 39(1), 45–65. https://doi.org/10.1016/S0306-4573(02)00021-3
Akinsanya, B. J., Araújo, L. J. P., Charikova, M., Gimaeva, S., Grichshenko, A., Khan, A., Mazzara, M., Ozioma Okonicha, N., & Shilintsev, D. (2021). Machine Learning and Value Generation in Software Development: A Survey. In A. Kalenkova, J. A. Lozano, & R. Yavorskiy (Eds.), Tools and Methods of Program Analysis (pp. 44–55). Springer International Publishing. https://doi.org/10.1007/978-3-030-71472-7_3
Alenezi, M., & Almuairfi, S. (2019). Security Risks in the Software Development Lifecycle. International Journal of Recent Technology and Engineering, 8, 7048–7055. https://doi.org/10.35940/ijrte.C5374.098319
Alfadda, H. A., & Mahdi, H. S. (2021). Measuring Students’ Use of Zoom Application in Language Course Based on the Technology Acceptance Model (TAM). Journal of Psycholinguistic Research, 50(4), 883–900. https://doi.org/10.1007/s10936-020-09752-1
Al-Fraihat, D., Joy, M., Masa’deh, R., & Sinclair, J. (2020). Evaluating E-learning systems success: An empirical study. Computers in Human Behavior, 102, 67–86. https://doi.org/10.1016/j.chb.2019.08.004
Anthony Jnr, B., Majid, M., & Romli, A. (2017). Application of Intelligent Agents and Case Based Reasoning Techniques for Green Software Development. Technics Technologies Education Management, 12(1), 30–43.
Arshadi, N., & Jurisica, I. (2005). Data mining for case-based reasoning in high-dimensional biological domains. IEEE Transactions on Knowledge and Data Engineering, 17(8), 1127–1137. https://doi.org/10.1109/TKDE.2005.124
Asif, M., & Ahmed, J. (2020). A Novel Case Base Reasoning and Frequent Pattern Based Decision Support System for Mitigating Software Risk Factors. IEEE Access, 8, 102278–102291. https://doi.org/10.1109/ACCESS.2020.2999036
Bannerman, P. L. (2008). Risk and risk management in software projects: A reassessment. Journal of Systems and Software, 81(12), 2118–2133. https://doi.org/10.1016/j.jss.2008.03.059
Basili, V. R., & Caldiera, G. (1995). Improve Software Quality by Reusing Knowledge and Experience. MIT Sloan Management Review, 37, 55–55.
Boehm, B. W. (1991). Software risk management: Principles and practices. IEEE Software, 8(1), 32–41. https://doi.org/10.1109/52.62930
Brady, A., Menzies, T., El-Rawas, O., Kocaguneli, E., & Keung, J. W. (2010). Case-Based Reasoning for Reducing Software Development Effort. Journal of Software Engineering and Applications, 03(11), 1005. https://doi.org/10.4236/jsea.2010.311118
Campillo-Gimenez, B., Jouini, W., Bayat, S., & Cuggia, M. (2013). Improving Case-Based Reasoning Systems by Combining K-Nearest Neighbour Algorithm with Logistic Regression in the Prediction of Patients’ Registration on the Renal Transplant Waiting List. PLOS ONE, 8(9), e71991. https://doi.org/10.1371/journal.pone.0071991
Cardie, C. (1993). Using Decision Trees to Improve Case-Based Learning. In Machine Learning Proceedings 1993 (pp. 25–32). Morgan Kaufmann. https://doi.org/10.1016/B978-1-55860-307-3.50010-1
Carmines, E. G., & Zeller, R. A. (1979). Reliability and Validity Assessment. SAGE Publications.
Castro, J. L., Navarro, M., Sánchez, J. M., & Zurita, J. M. (2011). Introducing attribute risk for retrieval in case-based reasoning. Knowledge-Based Systems, 24(2), 257–268. https://doi.org/10.1016/j.knosys.2010.09.002
Ceylan, E., Kutlubay, F. O., & Bener, A. B. (2006). Software Defect Identification Using Machine Learning Techniques. 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO’06), 240–247. https://doi.org/10.1109/EUROMICRO.2006.56
Challagulla, V. U. B., Bastani, F. B., Yen, I.-L., & Paul, R. A. (2008). Empirical assessment of machine learning based software defect prediction techniques. International Journal on Artificial Intelligence Tools, 17(02), 389–400. https://doi.org/10.1142/S0218213008003947
Chiu, C. (2002). A case-based customer classification approach for direct marketing. Expert Systems with Applications, 22(2), 163–168. https://doi.org/10.1016/S0957-4174(01)00052-5
Chun, E., Han, J., & Han, H. (2017). Risk Identification Using Case Based Reasoning in
Software Project. Journal of Software. 12(9), 744–750.
Chung, W., Pong, L. W., Fai, W., & Lam, K. (2008). Interpreting TF-IDF term weights as making relevance decisions. ACM Transactions on Information Systems (TOIS), 26(3), 1–37. https://doi.org/10.1145/1361684.1361686
Corbat, L., Nauval, M., Henriet, J., & Lapayre, J.-C. (2020). A fusion method based on Deep Learning and Case-Based Reasoning which improves the resulting medical image segmentations. Expert Systems with Applications, 147, 113200. https://doi.org/10.1016/j.eswa.2020.113200
Darke, P., Shanks, G., & Broadbent, M. (1998). Successfully completing case study research: Combining rigour, relevance and pragmatism. Information Systems Journal, 8(4), 273–289. https://doi.org/10.1046/j.1365-2575.1998.00040.x
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982–1003. https://doi.org/10.1287/mnsc.35.8.982
Davis, F. D., & Venkatesh, V. (2004). Toward preprototype user acceptance testing of new information systems: Implications for software project management. IEEE Transactions on Engineering Management, 51(1), 31–46. https://doi.org/10.1109/TEM.2003.822468
Day, M.-Y., & Lee, C.-C. (2016). Deep learning for financial sentiment analysis on finance news providers. 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 1127–1134. https://doi.org/10.1109/ASONAM.2016.7752381
Delany, S., & Cunningham, P. (2000). The Application of Case-Based Reasoning to Early Software Project Cost Estimation and Risk Assessment. Trinity College Dublin, Department of Computer Science.
Dhlamini, J., Nhamu, I., & Kaihepa, A. (2009). Intelligent risk management tools for software development. Proceedings of the 2009 Annual Conference of the Southern African Computer Lecturers’ Association, 33–40. https://doi.org/10.1145/1562741.1562745
Dingsøyr, T., Moe, N. B., & Seim, E. A. (2018). Coordinating Knowledge Work in Multiteam Programs: Findings From a Large-Scale Agile Development Program. Project Management Journal, 49(6), 64–77. https://doi.org/10.1177/8756972818798980
Doğan, S. Z., Arditi, D., & Günaydın, H. M. (2008). Using decision trees for determining attribute weights in a case-based model of early cost prediction. Journal of Construction Engineering and Management-Asce, 134(2), 146–152.
Dybå, T., Prikladnicki, R., Rönkkö, K., Seaman, C., & Sillito, J. (2011). Qualitative research in software engineering. Empirical Software Engineering, 16(4), 425–429. https://doi.org/10.1007/s10664-011-9163-y
El Emam, K., Benlarbi, S., Goel, N., & Rai, S. N. (2001). Comparing case-based reasoning classifiers for predicting high risk software components. Journal of Systems and Software, 55(3), 301–320. https://doi.org/10.1016/S0164-1212(00)00079-0
Finnie, G. R., Wittig, G. E., & Desharnais, J.-M. (1997). A comparison of software effort estimation techniques: Using function points with neural networks, case-based reasoning and regression models. Journal of Systems and Software, 39(3), 281–289. https://doi.org/10.1016/S0164-1212(97)00055-1
Foidl, H., & Felderer, M. (2019). Risk-based data validation in machine learning-based software systems. Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality Evaluation, 13–18. https://doi.org/10.1145/3340482.3342743
Gerhana, Y. A., Atmadja, A. R., Zulfikar, W. B., & Ashanti, N. (2017). The implementation of K-nearest neighbor algorithm in case-based reasoning model for forming automatic answer identity and searching answer similarity of algorithm case. 2017 5th International Conference on Cyber and IT Service Management (CITSM), 1–5. https://doi.org/10.1109/CITSM.2017.8089233
Goldberg, Y., & Levy, O. (2014). word2vec Explained: Deriving Mikolov et al.’s negative-sampling word-embedding method (arXiv:1402.3722). arXiv. https://doi.org/10.48550/arXiv.1402.3722
Grupe, F. H. (1993). Case-Based Reasoning. Information Systems Management, 10(2), 77–80. https://doi.org/10.1080/10580539308906934
Grupe, F. H., Urwiler, R., Ramarapu, N. K., & Owrang, M. (1998). The application of case-based reasoning to the software development process. Information and Software Technology, 40(9), 493–499. https://doi.org/10.1016/S0950-5849(98)00072-X
Gunawan, D., Sembiring, C. A., & Budiman, M. A. (2018). The Implementation of Cosine Similarity to Calculate Text Relevance between Two Documents. Journal of Physics: Conference Series, 978, 012120. https://doi.org/10.1088/1742-6596/978/1/012120
Han, M., & Cao, Z. (2015). An improved case-based reasoning method and its application in endpoint prediction of basic oxygen furnace. Neurocomputing, 149, 1245–1252. https://doi.org/10.1016/j.neucom.2014.09.003
Hinton, P. R., McMurray, I., & Brownlow, C. (2014). SPSS Explained (2nd ed.). Routledge. https://doi.org/10.4324/9781315797298
Hu, Y., Zhang, X., Ngai, E. W. T., Cai, R., & Liu, M. (2013). Software project risk analysis using Bayesian networks with causality constraints. Decision Support Systems, 56, 439–449. https://doi.org/10.1016/j.dss.2012.11.001
Huang, A.-L. (2008). Similarity Measures for Text Document Clustering. In Proceedings of the sixth new zealand computer science research student conference (NZCSRSC2008), Christchurch, New Zealand (Vol. 4, pp. 9-56).
Jani, H. M. (2010). Applying Case-Based Reasoning to software requirements specifications quality analysis system. The 2nd International Conference on Software Engineering and Data Mining, 140–144.
Joseph, H. R. (2015). Poster: Software Development Risk Management: Using Machine Learning for Generating Risk Prompts. 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, 2, 833–834. https://doi.org/10.1109/ICSE.2015.271
Joshi, A., Kale, S., Chandel, S., & Pal, D. K. (2015). Likert Scale: Explored and Explained. Current Journal of Applied Science and Technology, 396–403. https://doi.org/10.9734/BJAST/2015/14975
Karout, R., & Awasthi, A. (2017). Improving software quality using Six Sigma DMAIC-based approach: A case study. Business Process Management Journal, 23(4), 842–856. https://doi.org/10.1108/BPMJ-02-2017-0028
Keil, M., Cule, P. E., Lyytinen, K., & Schmidt, R. C. (1998). A framework for identifying software project risks. Communications of the ACM, 41(11), 76–83. https://doi.org/10.1145/287831.287843
Khoshgoftaar, T. M., Seliya, N., & Sundaresh, N. (2006). An empirical study of predicting software faults with case-based reasoning. Software Quality Journal, 14(2), 85–111. https://doi.org/10.1007/s11219-006-7597-z
Kolodner, J. L. (1992). An introduction to case-based reasoning. Artificial Intelligence Review, 6(1), 3–34. https://doi.org/10.1007/BF00155578
Kraut, R. E., & Streeter, L. A. (1995). Coordination in software development. Communications of the ACM, 38(3), 69–82.
Lahitani, A. R., Permanasari, A. E., & Setiawan, N. A. (2016). Cosine similarity to determine similarity measure: Study case in online essay assessment. 2016 4th International Conference on Cyber and IT Service Management, 1–6. https://doi.org/10.1109/CITSM.2016.7577578
Lamy, J.-B., Sekar, B., Guezennec, G., Bouaud, J., & Séroussi, B. (2019). Explainable artificial intelligence for breast cancer: A visual case-based reasoning approach. Artificial Intelligence in Medicine, 94, 42–53. https://doi.org/10.1016/j.artmed.2019.01.001
Le, Q., & Mikolov, T. (2014). Distributed Representations of Sentences and Documents. Proceedings of the 31st International Conference on Machine Learning, 32(2), 1188–1196. https://proceedings.mlr.press/v32/le14.html
Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(3), 191–204. https://doi.org/10.1016/S0378-7206(01)00143-4
Li, B., & Han, L. (2013). Distance Weighted Cosine Similarity Measure for Text Classification. In H. Yin, K. Tang, Y. Gao, F. Klawonn, M. Lee, T. Weise, B. Li, & X. Yao (Eds.), Intelligent Data Engineering and Automated Learning – IDEAL 2013 (pp. 611–618). Springer. https://doi.org/10.1007/978-3-642-41278-3_74
Li, H., & Sun, J. (2009). Predicting business failure using multiple case-based reasoning combined with support vector machine. Expert Systems with Applications, 36(6), 10085–10096. https://doi.org/10.1016/j.eswa.2009.01.013
Li, O., Liu, H., Chen, C., & Rudin, C. (2018). Deep Learning for Case-Based Reasoning Through Prototypes: A Neural Network That Explains Its Predictions. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), Article 1. https://doi.org/10.1609/aaai.v32i1.11771
Liu, K., Ergu, D., Cai, Y., Gong, B., & Sheng, J. (2019). A New Approach to Process the Unknown Words in Financial Public Opinion. Procedia Computer Science, 162, 523–531. https://doi.org/10.1016/j.procs.2019.12.019
Louati, A., Louati, H., & Li, Z. (2021). Deep learning and case-based reasoning for predictive and adaptive traffic emergency management. The Journal of Supercomputing, 77(5), 4389–4418. https://doi.org/10.1007/s11227-020-03435-3
Mahdi, M. N., Mohamed Zabil, M. H., Ahmad, A. R., Ismail, R., Yusoff, Y., Cheng, L. K., Azmi, M. S. B. M., Natiq, H., & Happala Naidu, H. (2021). Software Project Management Using Machine Learning Technique—A Review. Applied Sciences, 11(11), 5183. https://doi.org/10.3390/app11115183
Mihalcea, R., & Tarau, P. (2004). TextRank: Bringing Order into Text. Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, 404–411. https://aclanthology.org/W04-3252
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space (arXiv:1301.3781). arXiv. https://doi.org/10.48550/arXiv.1301.3781
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. Advances in Neural Information Processing Systems, 26, 3111–3119. https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
Moon, J.-W., & Kim, Y.-G. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217–230. https://doi.org/10.1016/S0378-7206(00)00061-6
Patel, K., Fogarty, J., Landay, J. A., & Harrison, B. (2008). Investigating statistical machine learning as a tool for software development. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 667–676. https://doi.org/10.1145/1357054.1357160
Qaiser, S., & Ali, R. (2018). Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents. International Journal of Computer Applications, 181. https://doi.org/10.5120/ijca2018917395
Rahutomo, F., Kitasuka, T., & Aritsugi, M. (2012). Semantic Cosine Similarity. In The 7th international student conference on advanced science and technology ICAST , 4(1), 1.
Ramos, J. E. (2003). Using TF-IDF to Determine Word Relevance in Document Queries. In Proceedings of the first instructional conference on machine learning, 242(1), 29-48.
Rechia, N., Silva, L., Fontoura, L., & Campbell, J. (2014). Case-based Reasoning for Experience-based Collaborative Risk Management. In SEKE (pp. 262-267). https://doi.org/10.13140/2.1.4726.9766
Robin, C. R. R., & Uma, G. V. (2013). PRIMES: An ontology-based web service for software risk management. International Journal of Business Information Systems, 12(1), 88–109. https://doi.org/10.1504/IJBIS.2013.050661
Robinson, J. (2010). Triandis’ theory of interpersonal behaviour in understanding software piracy behaviour in the South African context. (Doctoral dissertation, University of the Witwatersrand).
Rocha, R. G. C., Azevedo, R. R., Sousa, Y. C., Tavares, E. de A., & Meira, S. (2014). A Case-based Reasoning System to Support the Global Software Development. Procedia Computer Science, 35, 194–202. https://doi.org/10.1016/j.procs.2014.08.099
Rong, X. (2016). Word2vec Parameter Learning Explained (arXiv:1411.2738). arXiv. https://doi.org/10.48550/arXiv.1411.2738
Seaman, C. B. (1999). Qualitative methods in empirical studies of software engineering. IEEE Transactions on Software Engineering, 25(4), 557–572. https://doi.org/10.1109/32.799955
Siavvas, M., Tsoukalas, D., Jankovic, M., Kehagias, D., & Tzovaras, D. (2022). Technical debt as an indicator of software security risk: A machine learning approach for software development enterprises. Enterprise Information Systems, 16(5), 1824017. https://doi.org/10.1080/17517575.2020.1824017
Singh, R., & Singh, S. (2021). Text Similarity Measures in News Articles by Vector Space Model Using NLP. Journal of The Institution of Engineers (India): Series B, 102(2), 329–338. https://doi.org/10.1007/s40031-020-00501-5
Srinivasan, K., & Fisher, D. (1995). Machine learning approaches to estimating software development effort. IEEE Transactions on Software Engineering, 21(2), 126–137. https://doi.org/10.1109/32.345828
Taherdoost, H. (2016). Validity and Reliability of the Research Instrument; How to Test the Validation of a Questionnaire/Survey in a Research [SSRN Scholarly Paper]. https://doi.org/10.2139/ssrn.3205040
Tan, Y., Smith, N., & Bower, D. (2005). Improving risk identification by utilizing hybrid intelligent reasoning. Assoc. Res. Constr. Manag., 1, 3–5.
Wallace, L. G., & Sheetz, S. D. (2014). The adoption of software measures: A technology acceptance model (TAM) perspective. Information & Management, 51(2), 249–259. https://doi.org/10.1016/j.im.2013.12.003
Wan, Z., Xia, X., Lo, D., & Murphy, G. C. (2021). How does Machine Learning Change Software Development Practices? IEEE Transactions on Software Engineering, 47(9), 1857–1871. https://doi.org/10.1109/TSE.2019.2937083
Watson, I., & Marir, F. (1994). Case-based reasoning: A review. The Knowledge Engineering Review, 9(4), 327–354. https://doi.org/10.1017/S0269888900007098
Wen, J., Li, S., Lin, Z., Hu, Y., & Huang, C. (2012). Systematic literature review of machine learning based software development effort estimation models. Information and Software Technology, 54(1), 41–59. https://doi.org/10.1016/j.infsof.2011.09.002
Yao, L., Pengzhou, Z., & Chi, Z. (2019). Research on News Keyword Extraction Technology Based on TF-IDF and TextRank. 2019 IEEE/ACIS 18th International Conference on Computer and Information Science (ICIS), 452–455. https://doi.org/10.1109/ICIS46139.2019.8940293
Zhang, D. (2000). Applying machine learning algorithms in software development. In Proceedings of the 2000 Monterey workshop on modeling software system structures in a fastly moving scenario (pp. 275–291).
Zhang, D., & Tsai, J. J. P. (2003). Machine Learning and Software Engineering. Software Quality Journal, 11(2), 87–119. https://doi.org/10.1023/A:1023760326768
Zhang, W., Yoshida, T., & Tang, X. (2011). A comparative study of TF*IDF, LSI and multi-words for text classification. Expert Systems with Applications, 38(3), 2758–2765. https://doi.org/10.1016/j.eswa.2010.08.066
指導教授 陳仲儼(Chung-Yang Chen) 審核日期 2022-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明