博碩士論文 109521086 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:18.119.129.31
姓名 陳至宏(Zhi-Hong Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 深度學習於自動分割腦膜瘤放射手術後之水腫區域
(Deep Learning for Automated Segmentation of Brain Edema in Meningioma after Radiosurgery)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (全文檔遺失)
請聯絡國立中央大學圖書館資訊系統組 TEL:(03)422-7151轉57422,或E-mail聯絡
摘要(中) 腦膜瘤(meningioma)是最常見的良性腦部腫瘤之一,在接受加馬刀立體定位放射手術(Gamma knife radiosurgery, GKRS)治療後,可能會在病灶周邊產生一定程度的腦水腫(perifocal edema)。臨床治療上對於腦水腫體積的測定扮演著重要的角色。放射治療後病灶周邊水腫變化在腦部磁振T2權重影像(T2‐weighted)中可以清楚顯示,但是目前沒有客觀且準確的工具可以分割與量化T2權重影像中水腫的範圍與體積,所以不利於水腫消長過程、量化嚴重程度和病例差異性的研究。本研究藉由DeepMedic網路架構,和使用Mask R‐CNN模型取代手動式前處理的步驟,以遷移式學習(transfer learning)的概念訓練模型達到自動分割及量化T2權重影像中腦膜瘤GKRS後腦水腫區域。此量化工具將用以研究GKRS治療後所造成周邊組織的影響。本研究收集21位腦膜瘤患者齊接受過放射手術治療且定期追蹤的T2權重影像共154筆。經過篩選的130筆影像被隨機區分為訓練集94筆、 驗證集22筆,以及測試集14筆。T2權重影像中的實際水腫範圍由臨床醫師手動標記作為監督式學習的依據。14筆測試資料經由訓練模型自動分割後,與醫師手動標記相比,達到平均相似係數(Dice similarity coefficient, DSC) 84.7%。本研究所建立的系統對於自動分割量化腦膜瘤患者接受放射手術治療後產生的腦水腫達到了相當優秀的效能,並且展露了預測模型建立的可能性。
摘要(英) Meningioma is one of the most common benign brain tumors, the radiation to the brain tissue surround the lesions may cause different degree of perifocal edema few months after Gamma knife radiosurgery (GKRS). Volumetric assessment of perifocal edema is highly relevant for therapy planning and monitoring. The post radiosurgery brain perifocal edematous change can be clearly identified in brain magnetic resonance T2‐weighted (T2‐w) images in which it appears as more hyper‐dense area compared with normal brain tissue. However, there is a lack of an objective tool to segment and quantify the volume of these T2‐w hyper‐dense area. So, it is not conducive to the research of the process of edema growth, quantification of severity and case differences. This study trained Mask R‐CNN to replace manual pre-processing steps to generate region interest, and trained DeepMedic architecture with the concept of transfer learning to automatically segment and quantify brain edema regions in images. This quantitative result will be used to explore the research of GKRS treatment on brain edema caused by meningioma in the future. Twenty‐one patients with meningiomas who had undergone GKRS treatment, and a total of 154 regularly tracked T2‐w scans were collected. The selected 130 scans are randomly distributed to a training set of 80 scans, a validation set of 80 scans, and a test set of 20 scans. The actual range of edema in the T2‐w images is labeled manually by the clinical radiologist as a gold standard for supervised learning. The 14 test scans were automatically segmented by the trained model and compared with the manual segmentation. The average Dice similarity coefficient is 84.7%. The automatic segmentation and quantification method this research proposed for brain edema after radiosurgery demonstrates excellent results. Possibilities for building predictive models are revealed.
關鍵字(中) ★ 腦膜瘤
★ 腦水腫
★ 加馬刀放射治療
★ 深度學習
★ 腦部分割
★ 數位影像處理
關鍵字(英) ★ Meningioma
★ Brain edema
★ Gamma knife Radiosurgery
★ Deep Learning
★ Brain Segmentation
★ Digital Image Processing
論文目次 摘要 i
ABSTRACT ii
ACKNOLEDGEMENT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES x
CHAPTER 1 Introduction 1
1.1 Motivation 1
1.2 Meningiomas 2
1.3 Literature Review 3
CHAPTER 2 Materials and Methods 12
2.1 MRI Protocol 13
2.2 Dataset 15
2.3 Cross‐Validation 17
2.4 Data Pre‐Processing 20
2.4.1 Image Cropping 21
2.4.2 Voxel Resampling 21
2.4.3 Z‐Score Standardization 22
2.5 Data Augmentation 23
2.5.1 Contrast Enhancement 24
2.5.2 Elastic Transformation 25
2.6 Deep Learning 27
2.6.1 Neural Network 29
2.6.1.1 Neuron 29
2.6.1.2 Layers of Neural Network 30
2.6.2 Convolutional Neural Network 31
2.6.2.1 Convolutional Layers 32
2.6.2.2 Pooling Layers 34
2.6.2.3 Fully Connected Layers 35
2.6.3 Transfer Learning 36
2.7 Brain Extraction 37
2.7.1 Brain Masks 38
2.7.1.1 Images Reorientation 38
2.7.1.2 Split 39
2.7.1.3 Synthesize 40
2.7.1.4 Fill Manually 40
2.7.2 Mask R-CNN 41
2.7.3 Registration for GUI 43
2.8 Edema Segmentation 44
2.8.1 DeepMedic 46
2.9 Evaluation Index 48
CHAPTER 3 Experimental Results 50
3.1 Automatic Brain Extraction 50
3.1.1 Backbone 50
3.1.2 Region 51
3.1.3 Brain Extraction 53
3.1.4 Registration for GUI 57
3.2 Automatic Edema Segmentation 59
3.3 Ablation Study of Speed 64
3.4 Progression Chart 65
3.5 Graphical User Interface 67
CHAPTER 4 Discussion 68
4.1 Limitation of Dataset 68
4.2 Image Quality 69
4.3 Edema Volume 69
4.4 Registration for GUI 72
4.5 Clinical Value 73
CHAPTER 5 Conclusion and Future Work 74
5.1 Conclusion 74
5.2 Future Work 75
REFERENCES 76
APPENDIX 82
A. Environment 82
B. Main Window 83
C. Button Function 84
a. LOAD 84
b. RUN 86
c. EXPORT 89
d. SNAPSHOT 90
D. Information Bar 91
a. Patients Information 91
b. Diagnosis Information 92
c. Analysis Results Information 93
d. Other Information 94
e. Main Display Information 94
E. Operation Steps 95
a. Software start 95
b. RUN Processing 97
c. RUN Complete 97
d. Data Storage 98
F. Installation Steps 101
a. Installation 101
參考文獻 [1] I. Despotović, B. Goossens, and W. Philips, "MRI segmentation of the human brain: challenges, methods, and applications," (in eng), Comput Math Methods Med, vol. 2015, p. 450341, 2015, doi: 10.1155/2015/450341.
[2] C. Marosi et al., "Meningioma," (in eng), Crit Rev Oncol Hematol, vol. 67, no. 2, pp. 153-71, Aug 2008, doi: 10.1016/j.critrevonc.2008.01.010.
[3] C. Moussalem et al., "Meningioma genomics: a therapeutic challenge for clinicians," (in eng), J Integr Neurosci, vol. 20, no. 2, pp. 463-469, Jun 30 2021, doi: 10.31083/j.jin2002049.
[4] S. Loncaric, D. Kovacevic, and D. Cosic, "Fuzzy expert system for edema segmentation," in MELECON′98. 9th Mediterranean Electrotechnical Conference. Proceedings (Cat. No. 98CH36056), 1998, vol. 2: IEEE, pp. 1476-1479.
[5] A. Chaudhari and J. Kulkarni, "Cerebral edema segmentation using textural feature," Biocybernetics and Biomedical Engineering, vol. 39, no. 3, pp. 599-612, 2019.
[6] I. Njeh et al., "3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach," (in eng), Comput Med Imaging Graph, vol. 40, pp. 108-19, Mar 2015, doi: 10.1016/j.compmedimag.2014.10.009.
[7] K. Xie, J. Yang, Z. G. Zhang, and Y. M. Zhu, "Semi-automated brain tumor and edema segmentation using MRI," (in eng), Eur J Radiol, vol. 56, no. 1, pp. 12-9, Oct 2005, doi: 10.1016/j.ejrad.2005.03.028.
[8] S. Reza and K. M. Iftekharuddin, "Multi-fractal texture features for brain tumor and edema segmentation," in Medical Imaging 2014: Computer-Aided Diagnosis, 2014, vol. 9035: SPIE, pp. 11-20.
[9] A. Demirhan, M. Toru, and I. Guler, "Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks," (in eng), IEEE J Biomed Health Inform, vol. 19, no. 4, pp. 1451-8, Jul 2015, doi: 10.1109/jbhi.2014.2360515.
[10] L. A. Ramos et al., "Convolutional Neural Networks For Automated Edema Segmentation in Patients With Intracerebral Hemorrhage," 2018.
[11] N. Ironside et al., "Fully Automated Segmentation Algorithm for Perihematomal Edema Volumetry After Spontaneous Intracerebral Hemorrhage," (in eng), Stroke, vol. 51, no. 3, pp. 815-823, Mar 2020, doi: 10.1161/strokeaha.119.026764.
[12] M. Havaei et al., "Brain tumor segmentation with Deep Neural Networks," (in eng), Med Image Anal, vol. 35, pp. 18-31, Jan 2017, doi: 10.1016/j.media.2016.05.004.
[13] S. Pereira, A. Pinto, J. Amorim, A. Ribeiro, V. Alves, and C. A. Silva, "Adaptive Feature Recombination and Recalibration for Semantic Segmentation With Fully Convolutional Networks," (in eng), IEEE Trans Med Imaging, vol. 38, no. 12, pp. 2914-2925, Dec 2019, doi: 10.1109/tmi.2019.2918096.
[14] Y. Xue, T. Xu, H. Zhang, L. R. Long, and X. Huang, "SegAN: Adversarial Network with Multi-scale L(1) Loss for Medical Image Segmentation," (in eng), Neuroinformatics, vol. 16, no. 3-4, pp. 383-392, Oct 2018, doi: 10.1007/s12021-018-9377-x.
[15] G. Wang, W. Li, S. Ourselin, and T. Vercauteren, "Automatic Brain Tumor Segmentation Based on Cascaded Convolutional Neural Networks With Uncertainty Estimation," (in eng), Front Comput Neurosci, vol. 13, p. 56, 2019, doi: 10.3389/fncom.2019.00056.
[16] X. Feng, N. J. Tustison, S. H. Patel, and C. H. Meyer, "Brain Tumor Segmentation Using an Ensemble of 3D U-Nets and Overall Survival Prediction Using Radiomic Features," (in eng), Front Comput Neurosci, vol. 14, p. 25, 2020, doi: 10.3389/fncom.2020.00025.
[17] D. Lachinov, E. Vasiliev, and V. Turlapov, "Glioma segmentation with cascaded UNet," in International MICCAI Brainlesion Workshop, 2018: Springer, pp. 189-198.
[18] P.-Y. Kao, T. Ngo, A. Zhang, J. W. Chen, and B. Manjunath, "Brain tumor segmentation and tractographic feature extraction from structural MR images for overall survival prediction," in International MICCAI Brainlesion Workshop, 2018: Springer, pp. 128-141.
[19] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, "3D U-Net: learning dense volumetric segmentation from sparse annotation," in International conference on medical image computing and computer-assisted intervention, 2016: Springer, pp. 424-432.
[20] K. Kamnitsas et al., "Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation," Medical image analysis, vol. 36, pp. 61-78, 2017.
[21] W. Li, G. Wang, L. Fidon, S. Ourselin, M. J. Cardoso, and T. Vercauteren, "On the compactness, efficiency, and representation of 3D convolutional networks: brain parcellation as a pretext task," in International conference on information processing in medical imaging, 2017: Springer, pp. 348-360.
[22] Y.-L. Ho, W.-Y. Lin, C.-L. Tsai, C.-C. Lee, and C.-Y. Lin, "Automatic brain extraction for T1-weighted magnetic resonance images using region growing," in 2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE), 2016: IEEE, pp. 250-253.
[23] J. Qiu and W. Cheng, "Brain tissues extraction based on improved Brain Extraction Tool algorithm," in 2016 2nd IEEE International Conference on Computer and Communications (ICCC), 2016: IEEE, pp. 553-556.
[24] A. Chaddad and C. Tanougast, "Quantitative evaluation of robust skull stripping and tumor detection applied to axial MR images," (in eng), Brain Inform, vol. 3, no. 1, pp. 53-61, Mar 2016, doi: 10.1007/s40708-016-0033-7.
[25] R. Roslan, N. Jamil, and R. Mahmud, "Skull stripping of MRI brain images using mathematical morphology," in 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), 2010: IEEE, pp. 26-31.
[26] F. Isensee et al., "Automated brain extraction of multisequence MRI using artificial neural networks," (in eng), Hum Brain Mapp, vol. 40, no. 17, pp. 4952-4964, Dec 1 2019, doi: 10.1002/hbm.24750.
[27] Z. Liu, B. Xiao, Y. Li, and Y. Fan, "Context-endcoding for neural network based skull stripping in magnetic resonance imaging," arXiv preprint arXiv:1910.10798, 2019.
[28] S. S. Mohseni Salehi, D. Erdogmus, and A. Gholipour, "Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging," (in eng), IEEE Trans Med Imaging, vol. 36, no. 11, pp. 2319-2330, Nov 2017, doi: 10.1109/tmi.2017.2721362.
[29] S. Ranjbar et al., "Robust automatic whole brain extraction on magnetic resonance imaging of brain tumor patients using dense-Vnet," arXiv preprint arXiv:2006.02627, 2020.
[30] H. Hwang, H. Z. U. Rehman, and S. Lee, "3D U-Net for skull stripping in brain MRI," Applied Sciences, vol. 9, no. 3, p. 569, 2019.
[31] J. Dolz, K. Gopinath, J. Yuan, H. Lombaert, C. Desrosiers, and I. Ben Ayed, "HyperDense-Net: A Hyper-Densely Connected CNN for Multi-Modal Image Segmentation," (in eng), IEEE Trans Med Imaging, vol. 38, no. 5, pp. 1116-1126, May 2019, doi: 10.1109/tmi.2018.2878669.
[32] D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, D. A. Rottenberg, and R. M. Leahy, "Magnetic resonance image tissue classification using a partial volume model," (in eng), Neuroimage, vol. 13, no. 5, pp. 856-76, May 2001, doi: 10.1006/nimg.2000.0730.
[33] D. A. Weiss et al., "Automated multiclass tissue segmentation of clinical brain MRIs with lesions," (in eng), Neuroimage Clin, vol. 31, p. 102769, 2021, doi: 10.1016/j.nicl.2021.102769.
[34] L. Dora, S. Agrawal, R. Panda, and A. Abraham, "State-of-the-Art Methods for Brain Tissue Segmentation: A Review," (in eng), IEEE Rev Biomed Eng, vol. 10, pp. 235-249, 2017, doi: 10.1109/rbme.2017.2715350.
[35] K. He, G. Gkioxari, P. Dollar, and R. Girshick, "Mask R-CNN," (in eng), IEEE Trans Pattern Anal Mach Intell, vol. 42, no. 2, pp. 386-397, Feb 2020, doi: 10.1109/tpami.2018.2844175.
[36] R. Girshick, "Fast R-CNN," in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1440-1448.
[37] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," (in eng), IEEE Trans Pattern Anal Mach Intell, vol. 39, no. 6, pp. 1137-1149, Jun 2017, doi: 10.1109/tpami.2016.2577031.
[38] E. Shelhamer, J. Long, and T. Darrell, "Fully Convolutional Networks for Semantic Segmentation," (in eng), IEEE Trans Pattern Anal Mach Intell, vol. 39, no. 4, pp. 640-651, Apr 2017, doi: 10.1109/tpami.2016.2572683.
[39] T. T. P. Quoc, T. T. Linh, and T. N. T. Minh, "Comparing U-Net convolutional network with mask R-CNN in agricultural area segmentation on satellite images," in 2020 7th NAFOSTED Conference on Information and Computer Science (NICS), 2020: IEEE, pp. 124-129.
[40] P. G. Minatel, B. C. F. de Oliveira, and A. A. G. Junior, "Comparison of Unet and Mask R-CNN for impact damage segmentation in lock-in thermography phase images," in Automated Visual Inspection and Machine Vision IV, 2021, vol. 11787: SPIE, pp. 177-187.
[41] Matterport, Inc. (2018). Sunnyvale, CA. [Online]. Available: https://github.com/matterport
[42] M. W. Browne, "Cross-validation methods," Journal of mathematical psychology, vol. 44, no. 1, pp. 108-132, 2000.
[43] P. Refaeilzadeh, L. Tang, and H. Liu, "Cross-validation," Encyclopedia of database systems, vol. 5, pp. 532-538, 2009.
[44] J. Shao, "Linear model selection by cross-validation," Journal of the American statistical Association, vol. 88, no. 422, pp. 486-494, 1993.
[45] S. Arlot and A. Celisse, "A survey of cross-validation procedures for model selection," Statistics surveys, vol. 4, pp. 40-79, 2010.
[46] N. Papinutto et al., "Intersubject variability and normalization strategies for spinal cord total cross‐sectional and gray matter areas," Journal of Neuroimaging, vol. 30, no. 1, pp. 110-118, 2020.
[47] W. R. Crum, O. Camara, and D. L. Hill, "Generalized overlap measures for evaluation and validation in medical image analysis," (in eng), IEEE Trans Med Imaging, vol. 25, no. 11, pp. 1451-61, Nov 2006, doi: 10.1109/tmi.2006.880587.
[48] C. Cheadle, M. P. Vawter, W. J. Freed, and K. G. Becker, "Analysis of microarray data using Z score transformation," The Journal of molecular diagnostics, vol. 5, no. 2, pp. 73-81, 2003.
[49] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.
[50] C. Szegedy et al., "Going deeper with convolutions," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1-9.
[51] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, "Autoaugment: Learning augmentation strategies from data," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 113-123.
[52] C. Shorten and T. M. Khoshgoftaar, "A survey on image data augmentation for deep learning," Journal of big data, vol. 6, no. 1, pp. 1-48, 2019.
[53] J. Nalepa, M. Marcinkiewicz, and M. Kawulok, "Data Augmentation for Brain-Tumor Segmentation: A Review," (in eng), Front Comput Neurosci, vol. 13, p. 83, 2019, doi: 10.3389/fncom.2019.00083.
[54] M. D. Cirillo, D. Abramian, and A. Eklund, "What is the best data augmentation for 3D brain tumor segmentation?," in 2021 IEEE International Conference on Image Processing (ICIP), 2021: IEEE, pp. 36-40.
[55] M. Agarwal and R. Mahajan, "Medical images contrast enhancement using quad weighted histogram equalization with adaptive gama correction and homomorphic filtering," Procedia computer science, vol. 115, pp. 509-517, 2017.
[56] Y. Abdallah and R. Yousef, "Augmentation of X-rays images using pixel intensity values adjustments," International Journal of Science and Research (IJSR), vol. 4, no. 2, pp. 2425-2430, 2015.
[57] E. Castro, J. S. Cardoso, and J. C. Pereira, "Elastic deformations for data augmentation in breast cancer mass detection," in 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), 2018: IEEE, pp. 230-234.
[58] P. Y. Simard, D. Steinkraus, and J. C. Platt, "Best practices for convolutional neural networks applied to visual document analysis," in Icdar, 2003, vol. 3, no. 2003: Edinburgh.
[59] P. Kim, "Matlab deep learning," With machine learning, neural networks and artificial intelligence, vol. 130, no. 21, 2017.
[60] N. Ketkar and E. Santana, Deep learning with Python. Springer, 2017.
[61] M. Hussain, J. J. Bird, and D. R. Faria, "A study on cnn transfer learning for image classification," in UK Workshop on computational Intelligence, 2018: Springer, pp. 191-202.
[62] S. Deepak and P. Ameer, "Brain tumor classification using deep CNN features via transfer learning," Computers in biology and medicine, vol. 111, p. 103345, 2019.
[63] D. Han, Q. Liu, and W. Fan, "A new image classification method using CNN transfer learning and web data augmentation," Expert Systems with Applications, vol. 95, pp. 43-56, 2018.
[64] F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein, "Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge," in International MICCAI Brainlesion Workshop, 2017: Springer, pp. 287-297.
[65] S. Zheng et al., "Conditional random fields as recurrent neural networks," in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1529-1537.
[66] P. Krähenbühl and V. Koltun, "Efficient inference in fully connected crfs with gaussian edge potentials," Advances in neural information processing systems, vol. 24, 2011.
[67] DeepMedic. (2019). Oxford UK. [Online]. Available: https://github.com/deepmedic
[68] S. Targ, D. Almeida, and K. Lyman, "Resnet in resnet: Generalizing residual architectures," arXiv preprint arXiv:1603.08029, 2016.
[69] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, "Aggregated residual transformations for deep neural networks," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1492-1500.
[70] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.
[71] H. R. Sheikh, A. C. Bovik, and G. De Veciana, "An information fidelity criterion for image quality assessment using natural scene statistics," IEEE Transactions on image processing, vol. 14, no. 12, pp. 2117-2128, 2005.
[72] H. R. Sheikh and A. C. Bovik, "Image information and visual quality," (in eng), IEEE Trans Image Process, vol. 15, no. 2, pp. 430-44, Feb 2006, doi: 10.1109/tip.2005.859378.
[73] K. Gu, G. Zhai, X. Yang, W. Zhang, and M. Liu, "Subjective and objective quality assessment for images with contrast change," in 2013 IEEE International Conference on Image Processing, 2013: IEEE, pp. 383-387.
[74] I. Arora and N. K. Garg, "Bi-featured image quality assessment with the hierarchical image quality enhancement algorithm," in 2016 International Conference on Inventive Computation Technologies (ICICT), 2016, vol. 2: IEEE, pp. 1-6.
[75] H. Jeelani, J. Martin, F. Vasquez, M. Salerno, and D. S. Weller, "Image quality affects deep learning reconstruction of MRI," in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018: IEEE, pp. 357-360.
[76] I. Oksuz et al., "Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation," (in eng), IEEE Trans Med Imaging, vol. 39, no. 12, pp. 4001-4010, Dec 2020, doi: 10.1109/tmi.2020.3008930.
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2022-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明