博碩士論文 108521034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:13.59.38.110
姓名 李御銓(Yu-Chuan Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於階層迴歸方法運用光體積描記訊號與心電圖估測血壓與脈波傳導速度
(Estimation of Blood Pressure and Pulse Wave Velocity from Photoplethysmography and Electrocardiography Using Hierarchy Regression)
相關論文
★ 具輸出級誤差消除機制之三位階三角積分D類放大器設計★ 應用於無線感測網路之多模式低複雜度收發機設計
★ 用於數位D類放大器的高效能三角積分調變器設計★ 交換電容式三角積分D類放大器電路設計
★ 適用於平行處理及排程技術的無衝突定址法演算法之快速傅立葉轉換處理器設計★ 適用於IEEE 802.11n之4×4多輸入多輸出偵測器設計
★ 應用於無線通訊系統之同質性可組態記憶體式快速傅立葉處理器★ 3GPP LTE正交分頻多工存取下行傳輸之接收端細胞搜尋與同步的設計與實現
★ 應用於3GPP-LTE下行多天線接收系統高速行駛下之通道追蹤與等化★ 適用於正交分頻多工系統多輸入多輸出訊號偵測之高吞吐量QR分解設計
★ 應用於室內極高速傳輸無線傳輸系統之 設計與評估★ 適用於3GPP LTE-A之渦輪解碼器硬體設計與實作
★ 下世代數位家庭之千兆級無線通訊系統★ 協作式通訊於超寬頻通訊系統之設計
★ 適用於3GPP-LTE系統高行車速率基頻接收機之設計★ 多使用者多輸入輸出前編碼演算法及關鍵組件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-31以後開放)
摘要(中) 血壓以及脈波傳導速率為心血管疾病重要的指標,血壓量測上多仰賴脈壓式血壓計,而脈波傳導速率則是需要在醫院量測,大多儀器是以壓脈帶方式量測。近年來,利用穿戴式裝置量測生理訊號,推算血壓與脈波傳導速率技術逐漸成熟,具有可長時間監測的優點以及對遠距醫療有所幫助。本論文利用心電訊號及光體積描記訊號來估測血壓和脈波傳導速率。從裝置取得手指及手腕心電訊號與光體積描記訊號後,對波型進行前處理,去除60Hz市電雜訊及基線飄移,並對訊號不良的波型進行初步的過濾,透過特徵萃取程序從心電訊號與光體積描記訊號取得特徵,並對光體積描記訊號進行波型拆解,將波型拆解成5個高斯成份波,並取其振幅、寬度與中心位置當作特徵。在資料處理的階段,篩選可用的特徵與波型段,並對不同血壓及脈波傳導速率的區間補足,以維持訓練資料集區間的平衡。而基於不同區間的血壓或是脈波傳導速率所看重的特徵不一定相同的觀察,因此提出了分層迴歸的方法,讓估測結果可以更加準確。使用手腕訊號特徵估測脈波傳導速率,演算法使用極限梯度提升(XGBoost)並直接做全域迴歸,女性均方根誤差為183.73(cm/s),男性均方根誤差為188.80(cm/s),如果採用先分類再迴歸,可以使得女性均方根誤差進步到149.72(cm/s),男性均方根誤差進步到160.15(cm/s)。而手指訊號特徵估測血壓,參考了國際量測血壓標準,以符合區間分布數量要求的85人255筆量測資料作為測試集。使用神經網路做全域迴歸,收縮壓均方根誤差為10.71(mmHg),若使用分層迴歸的技術,收縮壓均方根誤差可達到9.79(mmHg)。
摘要(英) Blood pressure and pulse wave velocity are important indicators of cardiovascular diseases. Blood pressure measurement mostly relies on the mercury sphygmomanometer and pulse wave velocity usually needs to be measured in hospitals. Most instruments measure pulse wave velocity by means of pressure pulse band. In recent years, the technology of measuring physiological signals by using wearable devices becomes popular, which has the advantages of long-term monitoring and is helpful for remote medical treatment. In this thesis, Electrocardiography (ECG) signals and photoplethysmography (PPG) signals are used to estimate blood pressure and pulse wave velocity, and the feature properties of blood pressure or pulse wave velocity in different zones may not be the same, so a hierarchical regression method is proposed to make the estimation results more accurate. The PPG signal from wrist was used to estimate the pulse wave velocity. We used eXtreme Gradient Boosting (XGBoost) for global regression. The root mean square estimation error (RMSE) for female and male was 183.73(cm/s), and 188.80(cm/s). The root mean square error can be improved to 149.72(cm/s) for female and 160.15(cm/s) for male if we applied classification before regression. The PPG and ECG signals from finger were used to estimate blood pressure according to the international standard of blood pressure measurement. The test set were composed of 255 measurements from 85 people which met the requirements of BP distribution. The root mean square error of systolic blood pressure was 10.71(mmHg) when neural network was adopted for global regression. The root mean square error of systolic blood pressure was 9.79(mmHg) when residual neural network-based hierarchical regression was used.
關鍵字(中) ★ 血壓估測
★ 脈波傳導速率估測
★ 心電圖
★ 光體積描記訊號
關鍵字(英) ★ Blood Pressure Estimation
★ Pulse Wave Velocity Estimation
★ Electrocardiography
★ Photoplethysmography
論文目次 摘要 i
Abstract ii
表目錄 vi
圖目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 1
1.3 論文組織 2
第二章 生理訊號 3
2.1 脈波傳導速率 (Pulse Wave Velocity, PWV) 3
2.2 舒張壓(Systolic Blood Pressure, SBP)與收縮壓(Diastolic Pressure, DBP) 4
2.3 光體積描記訊號 (Photoplethysmography, PPG) 5
2.4 心電圖 (Electrocardiogram, ECG) 6
第三章 特徵萃取 7
3.1 流程圖 7
3.2 前處理 (Preprocessing) 9
3.3 預篩選 (Pre-screening) 10
3.3.1 飽和訊號檢測 (Saturated Signal Detection) 10
3.3.2 異常峰波檢測 (Abnormal Peak Detection) 10
3.4 特徵擷取(Feature Extraction) 12
3.4.1 光體積描記訊號特徵擷取 12
3.4.2 心電圖特徵擷取 12
3.5 訊號品質檢測(Signal Quality Index) 14
3.6 加權式波型拆解(Weighted Pulse Decomposition) 15
3.7 加權式波型拆解品質檢測 (Weighted Pulse Decomposition Signal Quality Index) 17
3.8 手腕與手指訊號比較 18
第四章 脈波傳導速率估測及結果 19
4.1 資料處理 19
4.1.1 資料與特徵可靠度檢查 (Data and Feature Reliability Check) 20
4.1.2 特徵擴充(Feature Combination) 22
4.1.3 取中位數(Median Selection) 24
4.1.4 資料集切割(Data Set Segmentation) 24
4.2 演算法 27
4.2.1 線性迴歸 (Linear Regression) 27
4.2.2 極限梯度提升 (eXtreme Gradient Boosting, XGBoost) 28
4.3 全域迴歸模型 29
4.3.1 Multiple linear regression 29
4.3.2 極限梯度提升 (eXtreme Gradient Boosting, XGboost) 32
4.4 Hierarchical Regression Model 33
4.5 結果比較 42
4.6 PWV量測裝置驗證說明 45
4.7 總結 46
第五章 血壓估測演算法及結果 47
5.1 資料處理 47
5.1.1 血壓內插以及波型分割(Blood Pressure Interpolation and Waveform Division) 48
5.1.2 計算K值與多尺度熵計算(Calculate K Value and Multiscale Entropy) 48
5.1.3 特徵擴充(Feature Combination) 49
5.1.4 取中位數(Median Selection) 51
5.1.5 資料可靠度檢查(Data Reliability Check) 51
5.1.6 資料集切割(Data Set Segmentation) 53
5.2 演算法 61
5.2.1 標準神經網路 (Neural Network, NN) 61
5.2.2 卷積神經網路(Convolutional Neural Network, CNN) 62
5.2.3 短時距傅立葉轉換(Short-Time Fourier Transform) 63
5.3 全域迴歸模型(General Model) 66
5.3.1 學習速率下降因子(Learning Rate Drop Factor) 66
5.3.2 批量大小(Batch Size) 69
5.3.3 雙輸出模型(Two Output Net) 74
5.3.4 單輸出模型(One Output Net) 77
5.3.5 殘餘網路(Residual Net) 80
5.3.6 一維卷積神經網路架構 87
5.3.7 二維卷積神經網路架構 89
5.4 組合迴歸模型(Combining Model) 93
5.4.1 使用全部特徵 94
5.4.2 使用部分特徵 102
5.4.3 General Model之結果選擇 127
5.5 加入驗證資料集 133
5.5.1 全域迴歸模型(General Model) 133
5.5.2 組合迴歸模型(Combining Model) 136
5.6 結果比較 144
5.6.1 本論文所有模型的測試估測效能 144
5.6.2 本論文結果與其他論文之比較 147
5.7 總結 151
第六章 結論與未來展望 152
參考資料 153
參考文獻 [1] J. Cho, H. J. Baek, “A Comparative Study of Brachial–Ankle Pulse Wave Velocity and Heart–Finger Pulse Wave Velocity in Korean Adults”, Sensors, vol. 7, no. 20, 7 Apr 2020.
[2] K. Song, K.-Y. Chung and J.-H. Chang, “Cuffless deep learning-based blood pressure estimation for smart wristwatches”, IEEE Trans. Instrum. Meas., vol. 69, no. 7, pp. 4297-4297, Jul. 2020.
[3] S. Ismail, U. Akram and I. Siddiqi, “Heart rate tracking in photoplethys-mography signals affected by motion artifacts: a review”, EURASIP Journal on Advances in Signal Processing, vol. 2021, no. 1, pp. 2, 2021.
[4] Rahul Kher Eason, “Signal Processing Techniques for Removing Noise from ECG Signals”, J Biomed Eng, vol. 1, pp. 1-9, 2019.
[5] 黃秋樺(108)。,”基於光電容積描記法之手腕脈波傳導速度估測”,國立中央大學電機工程學系,桃園市。
[6] 郭嘉威(109)。,”基於手指光電容積描記法與心電訊號之血壓估測”,國立中央大學電機工程學系,桃園市。
[7] Doane, D.P. & Seward, L.E., “Measuring skewness: a forgotten statistic”, J. Statistics Education, vol. 19, no. 2, pp. 1-18, 2011.
[8] Ricardo Couceiro and Rui Pedro Paiva at al., “Assessment of cardiovascular function from multi-Gaussian fitting of a finger photoplethysmogram”, Physiological Measurement, vol. 36, no. 9, pp. 1801, 2015.
[9] Tsai, P.-Y. et al, “Coherence between decomposed components of wrist and finger PPG signals by imputing missing features and resolving ambiguous features.”, Sensors 21, 4315, 2021.
[10] “Non-invasive Vascular Screening Device BP-203RPE3 VP-1000 plus”, OMRON.
[11] G. Stergiou, B. Alpert, S. Mieke, R. Asmar, N. Atkins, S. Eckert, G. Frick, B. Friedman, T. Grassl, T. Ichikawa, J. Ioannidis, P. Lacy, R. Mcmanus, A. Murray, M. Myers, P. Palatini, G. Parati, D. Quinn, J. Sarkis, and E. O’Brien, ‘‘A universal standard for the validation of blood pressure measuring devices: Association for the advancement of medical instrumentation/European society of hypertension/international organization for standardization (AAMI/ESH/ISO) collaboration statement’’, Hypertension, vol. 71, no. 3, pp. 368–374, Jan. 2018.
[12] Shin, H., “XGBoost regression of the most significant photoplethysmogram features for assessing vascular aging”, IEEE Journal of Biomedical and Health Informatics, 2022.
[13] D.-G. Jang, S.-H. Park and M. Hahn, “Enhancing the pulse contour analysis-based arterial stiffness estimation using a novel photoplethysmographic parameter”, IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 1, pp. 256-262, 2015.
[14] Dae-Geun Jang et al., “A knowledge-based approach to arterial stiffness estimation using the digital volume pulse”, IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 4, pp. 366-374, 2012.
[15] Mohamed A. Bahloul, Abderrazak Chahid,Taous-Meriem Laleg-Kirati, “A Multilayer Perceptron-based Carotid-to-Femoral Pulse Wave Velocity Estimation using PPG Signal”, IEEE EMBS International Conference on Biomedical and Health Informatics, 2021.
[16] W. Jin, P. Chowienczyk, and J. Alastruey, ‘‘Estimating pulse wave velocity from the radial pressure wave using machine learning algorithms,’’ PLoS ONE, vol. 16, no. 6, Jun. 2021.
[17] Ian B. Wilkinson, Carmel M. McEniery, Giuseppe Schillaci, Pierre Boutouyrie, Patrick Segers, Anne Donald, Philip J. Chowienczyk, ‘‘ARTERY Society guidelines for validation of non-invasive haemodynamic measurement devices: Part 1, arterial pulse wave velocity”, Artery Res 2010.
[18] Costa M, Goldberger AL, Peng CK “Multiscale entropy analysis of biological signals”, Phys Rev E Stat Nonlin Soft Matter Phys 71:, 2005.
[19] Shiruru K, “An introduction to artificial neural network”, Int J Adv Res Innov Ideas Edu 1(5), 2016.
[20] Keiron O’Shea, Ryan Nash., “An introduction to convolutional neural networks”, pp. 0-11, NOVEMBER 2015.
[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun., “Deep residual learning for image recognition.”, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
[22] C. Molnar., “Interpretable Machine Learning: A Guide for Making Black Box Models”, Jun.6, 2018.
[Online].Available:https://christophm.github.io/interpretable-ml-book/
[23] S. Baek, J. Jang and S. Yoon, “End-to-End Blood Pressure Prediction via Fully Convolutional Networks”, IEEE Access, vol. 7, pp. 185458-185468, 2019.
[24] Z. Li et al, “A Novel Method for Calibration-Based Cuff-Less Blood Pressure Estimation”, Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4266-4269, 2019.
[25] M. Kachuee, M. M. Kiani, H. Mohammadzade and M. Shabany, “Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring”, IEEE Transactions on Biomedical Engineering, vol. 64, no. 4, pp. 859-869, April 2017.
[26] NH. Chowdhury , MNI. Shuzan, MEH. Chowdhury , et al, “Estimating Blood Pressure from the Photoplethysmogram Signal and Demographic Features Using Machine Learning Techniques”, Sensors, vol. 20, no. 11, p. 3127, Jun. 2020.
[27] M. Panwar, A. Gautam, D. Biswas and A. Acharyya, “PP-Net: A Deep Learning Framework for PPG-Based Blood Pressure and Heart Rate Estimation”, IEEE Sensors Journal, vol. 20, no. 17, pp. 10000-10011, 1 Sept.1, 2020.
[28] J. Li, K. Cheng, S. Wang, F. Morstatter, R. Trevino, J. Tang, H. Liu, “Feature selection: a data perspective”, arXiv preprint arXiv:1601.07996, 2016.
指導教授 蔡佩芸(Pei-Yun Tsai) 審核日期 2022-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明