博碩士論文 108521067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:106 、訪客IP:18.217.112.20
姓名 林天義(Tien-Yi Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用次諧波注入鎖定四相位鎖頻迴路暨反串接二極體之毫米波高性能正交調變器研製
(Research on Millimeter-Wave High-Performance Quadrature Modulator Using Sub-Harmonic Injection-Locked Quadrature Frequency-Locked Loop and Anti-Series Diode Technique)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 本論文主要針對毫米波頻段次諧波注入鎖定鎖頻迴路整合正交調變器與提出高性能反串接二極體架構BPSK與正交反射式調變器研製。第二章是Ka頻段次諧波注入鎖定四相位壓控振盪器(SILQVCO),使用疊接交錯耦合振盪核心克服製程最高頻率的限制,並利用正交注入鎖定技術降低振盪器的相位雜訊和正交誤差。使用台積電0.18 μm CMOS製程技術實現,最高操作頻率為27.9 GHz,可調頻率範圍為從26.2至27.9 GHz (6.4%),最大輸出功率為-13 dBm,自由振盪頻率下距載波偏移1 MHz最佳相位雜訊為-91.7 dBc/Hz,注入鎖定後距載波偏移1 MHz最佳相位雜訊為-122.2 dBc/Hz,整體電路優化指標FoMPN為-195.2。此外,正交輸出相位誤差與振幅誤差分別為1.05˚與0.21 dB,核心直流功耗不含緩衝放大器為36.6 mW,晶片面積為1.005×1.155 mm2。
第三章是Ka頻段具低相位雜訊低抖動次諧波注入鎖定鎖頻迴路(SILFLL)整合正交相位調變器(IQ modulator),該電路使用疊接交錯耦合技術提升最高操作頻率,並且使用正交注入鎖定技術進一步降低振盪器的相位雜訊和正交誤差。使用台積電0.18 μm CMOS製程技術實現,該電路量測最高頻率為28.2 GHz。使用次諧波注入鎖定技術能使毫米波操作頻率下擁有較低抖動,量測最低方均根抖動量可到46.9 fs。而頻率追蹤迴路技術可自適應調整控制電壓能抵抗電壓溫度與製程變異,使得鎖頻迴路穩定運作從26.5至28.2 GHz,注入鎖定輸出頻率範圍為1.7 GHz (6.2%),最大輸出功率為-12.2 dBm,注入鎖定後距載波偏移1 MHz最佳相位雜訊為-122 dBc/Hz,整體電路優化指標FoMPN為-195。所推薦的反射式調變器具有低輸入損耗、低直流功耗與低電路複雜度的特色。量測旁波抑制量為-30.5 dBc,LO抑制量為-24.3 dBc,複雜數位調變可達64-QAM調變方案。在1 Mbps符元率的傳輸下,量測星座圖顯示出對稱整齊,誤差向量振幅(EVM)為2.75%,電路總體直流功耗為62 mW,晶片面積為1.23×1.46 mm2。
第四章是提出毫米波頻段反串接架構的反射式調變器,實現電路包含傳統架構BPSK調變器、反串接BPSK調變器架構、傳統架構正交調變器與反串接架構正交調變器。此章節總共四顆電路並且以穩懋半導體股份有限公司所生產製造的砷化鎵(GaAs) PIN二極體製程技術實現。由反射式調變器基礎理論,利用數學方程針對所提出電路架構進行分析與驗證。由穿透係數對二極體偏壓進行高階微分數學分析結果,可知所提出反串接架構具有較小的高階互調失真和較優異的線性度。高次項互調抑制量測結果亦和理論結果吻合,相較於傳統架構調變器,反串接二極體架構展現高線性度、高互調抑制量且具備高階星座圖調變方案。對於傳統架構二進制調變器,在1 Mbps符元率傳輸下,量測誤差向量振幅(EVM)為1.22%。所提出反串接架構二進制調變器,在1 Mbps符元率傳輸下,量測誤差向量振幅(EVM)為0.37%。對於傳統反射式正交調變器,在1 Mbps符元率傳輸和64-QAM調變下,量測誤差向量振幅(EVM)為3.37%。使用IEEE 802.11a無線規格,在54 Mbps位元率傳輸和正交頻率區分多工(OFDM) 64-QAM調變下,量測誤差向量振幅(EVM)為-22.5 dB。所提出反串接架構二進制調變器,在1 Mbps位元率傳輸和256-QAM調變下,量測誤差向量振幅(EVM)為1.18%,量測結果呈現256-QAM清晰星座圖。在54 Mbps位元率傳輸和正交頻率區分多工(OFDM) 64-QAM調變下,量測誤差向量振幅(EVM)為-31.3 dB。
摘要(英) The thesis presented a few high-performance IQ modulators for high-speed and millimeter-wave (mm-wave) applications. An I/Q modulator integrated with a sub-harmonic injection-locked frequency-locked loop and high-performance anti-series BPSK and quadrature reflection-type modulators are proposed using some advance CMOS and GaAs processes. A Ka-Band sub-harmonic injection-locked quadrature voltage-controlled oscillator (SILQVCO) is presented in Chapter 2 using TSMC 0.18 μm CMOS process. A stack-boosting technique is employed in the cross-coupled core to further enhance the negative resistance and overcome the limitation of the CMOS process. In addition, a quadrature dual-injection technique is used to reduce the phase noise and the quadrature error. The maximum operation frequency of the proposed SILQVCO is up to 27.9 GHz. The tuning range is from 26.2 to 27.9 GHz with a fractional bandwidth of 6.4%. The highest output power is -13 dBm. Under the free-running condition, the measured lowest phase noise at 1-MHz offset frequency is -91.7 dBc/Hz. Under the injection-locked condition, the measured lowest phase noise at 1-MHz offset frequency is -122.5 dBc/Hz with a state-of-the-art figure-of-merit (FoMPN) of -195.2. Moreover, the measured phase error and amplitude error are 1.05˚ and 0.21 dB, respectively. The core DC power consumption without the buffers is 36.55 mW. The chip size, including RF and DC pads, is 1.005×1.155 mm2.
In Chapter 3, a Ka-Band low-phase noise and low-jitter sub-harmonic injection-locked frequency-locked loop (SILFLL) IQ modulator is proposed using TSMC 0.18 μm CMOS process. The stack-boosting and quadrature dual-injection techniques are both adopted to enhance the maximum frequency and reduce phase noise and the quadrature error. The measured highest frequency of the proposed circuit is up to 28.2 GHz. The measured lowest rms jitter is 46.9 fs. As can be observed, the frequency-tracking loop (FTL) can be employed to adaptively tuning the controlled voltage to resist the process, voltage, and temperature variations, and the measured SILFLL frequency is from 26.5 to 28.2 GHz. The measured output injection-locked frequency range is 1.7 GHz with a fractional bandwidth of 6.2%. The measured highest output power is -12.2 dBm. Under the injection-locked condition, the measured lowest phase noise at 1-MHz offset frequency is -122 dBc/Hz with a lowest FoMPN of -195. The proposed injection-locked quadrature modulator features low insertion loss, low dc power consumption, and low circuit complexity. The measured single sideband and LO suppressions are better than -30.5 and -24.3 dBc, respectively. The digital modulation scheme is successfully performed up to 64-QAM with a 1-Mbps symbol rate. The measured lowest error vector magnitude (EVM) of the 64-QAM modulation is 2.75%. The DC power consumption is 62 mW. The chip size, including RF and DC pads, is 1.23×1.46 mm2.
In Chapter 4, several mm-wave conventional modified and proposed anti-series diode reflection-type modulators, including the conventional modified reflection-type and anti-series diode BPSK modulators, the conventional modified reflection-type and anti-series diode IQ modulators, are presented using GaAs PIN diode process provided by WIN Semiconductors Corporation. The principle of the reflection-type modulator is introduced, and the mathematical models of the conventional modified reflection-type and the proposed modulators are presented to verify the linearity of the modulators. The high-order derivations of the transmission coefficients versus diode bias for the modulators are presented to evaluate the intermodulation distortion of the conventional modified reflection-type and the proposed anti-series diode modulators. The measured results of the high-order intermodulation suppressions show good agreement with the theoretical results. As compared with the conventional modulator, the proposed anti-series diode modulator exhibits high linearity and good intermodulation suppression, and also it is suitable for high-level modulation schemes. As the symbol rate is 1 Mbps, the measured EVMs of the BPSK modulation for the conventional and the proposed BPSK modulators are 1.22% and 0.37%, respectively. As the symbol rate is 1 Mbps with 64-QAM modulation, the measured EVM of the conventional IQ modulators is 3.37%. As the symbol rate is 1 Mbps with 256-QAM modulation, the measured EVMs of the proposed IQ modulators are 1.18%, respectively. Under the IEEE 802.11a wireless communication standard with a bit rate of 54 Mbps, the measured EVMs of 64-QAM orthogonal frequency division multiplexing (OFDM) modulation for the conventional and the proposed IQ modulators are -22.5 and -31.25 dB, respectively.
關鍵字(中) ★ Ka頻段
★ 鎖頻迴路
★ 四相位
★ 正交調變器
★ 振盪器
★ 次諧波注入鎖定
關鍵字(英) ★ Ka-band
★ Frequency-locked loop
★ Quadrature
★ I/Q modulator
★ Oscillator
★ Sub-harmonically injection-locked
論文目次 摘要 I
Abstract III
目錄 VI
圖目錄 IX
表目錄 XIX
第一章 緒論 1
1.1 研究動機及背景 1
1.2 相關研究發展 2
1.3 論文貢獻 3
1.4 論文架構 4
第二章 Ka頻段變壓器耦合式次諧波注入鎖定四相位壓控振盪器 5
2.1 簡介 5
2.2 注入鎖定原理與頻率倍頻器介紹 6
2.2.1 注入鎖定原理概述[28] 6
2.2.2 頻率倍頻器介紹 9
2.3 電路設計及分析 11
2.3.1 變壓器設計[49] 14
2.3.2 疊接增強負阻分析 15
2.4 電路實現及實驗結果與討論 17
2.4.1 次諧波注入鎖定四相位振盪器頻率及鎖定範圍量測 18
2.4.2 次諧波注入鎖定四相位振盪器頻率偏移及誤差除錯 25
2.5 總結 28
第三章 應用疊接增強技術之Ka頻段高線性度注入鎖頻迴路整合正交調變器 30
3.1 簡介 30
3.2 次諧波注入鎖定鎖頻迴路(SILFLL)系統模擬 31
3.2.1 波德圖穩定度模擬與分析 33
3.2.2 閉迴路暫態分析 35
3.2.3 次諧波注入鎖定鎖頻迴路(SILQFLL)相位雜訊分析[49] 36
3.3 電路設計及分析 37
3.3.1 次諧波注入鎖定四相位壓控疊接振盪器[50] 38
3.3.2 類比式低功耗高速頻率比較器[30] 40
3.3.3 電壓轉電流放大器 43
3.3.4 反射式正交調變器 45
3.4 SILQFLL電路實現及實驗結果與討論 50
3.4.1 次諧波注入鎖定四相位壓控振盪器量測 52
3.4.2 鎖頻迴路量測 57
3.4.3 正交調變器量測 61
3.5 總結 68
第四章 高線性度Ka頻段二進制相位及正交調變器 70
4.1 簡介 70
4.2 二進制相位調變器[65] 71
4.2.1 傳統與反串接架構設計與分析 71
4.2.2 調變線性度分析 79
4.2.3 S參數量測結果 93
4.2.4 EVM量測結果 100
4.3 正交相位調變器 109
4.3.1 傳統與反串接架構設計及分析 109
4.3.2 S參數量測結果 116
4.3.3 旁波抑制量測結果 125
4.3.4 EVM量測結果 128
4.4 總結 139
第五章 結論 142
參考文獻 144
參考文獻 [1] V. Jain, B. Javid, and P. Heydari, “A BiCMOS dual-band millimeterwave frequency synthesizer for automotive radars,” IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2100–2113, Aug. 2009.
[2] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A. Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2667–2681, Dec. 2010.2113, Aug. 2009.
[3] A. Arbabian, S. Kang, S. Callender, J.-C. Chien, B. Afshar, and A. Niknejad, “A 94 GHz mm-wave to baseband pulsed-radar for imaging and gesture recognition,” in 2012 IEEE Int. Symp. on VLSI Design, Automation and Test, Jun. 2012, pp. 56-57.
[4] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1055–1071, Apr. 2013.
[5] C.-C. Wang, Z. Chen, and P. Heydari, “W-Band silicon-based frequency synthesizers using injection-locked and harmonic triplers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 5, pp. 1307-1320, May 2012.
[6] S.-J. Li, H.-H. Hsieh, and L.-H. Lu, “A 10 GHz phase-locked loop with a compact low-pass filter in 0.18 μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 659–661, Oct. 2009.
[7] Y.-H., Lin, J.-H. Tsai, Y.-H. Kuo, and T.-W. Huang, “An ultra low-power 24 GHz phase-lock-loop with low phase-noise VCO embedded in 0.18 μm CMOS process,” in 2011 Asia-Pacific Microw. Conf., Dec. 2011, pp. 1630–1633.
[8] J. Lee, S. Lee, H. Kim, and H. Yu, “A 28.5–32-GHz fast settling multichannel PLL synthesizer for 60-GHz WPAN radio,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 5, pp. 1234-1246, 2008.
[9] M. Huang, C.-H. Yu, J.-H. Tsai, and T.-W. Huang, “A low-power 24 GHz phase lock loop with gain-boosted charge pump embedded in 0.18 µm COMS technology,” in 2012 Asia-Pacific Microw. Conf., Dec. 2012, pp. 643–645.
[10] Y.-L. Yeh and H.-Y. Chang, “Design and analysis of a W-band divide-by-three injection-locked frequency divider using second harmonic enhancement technique,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp.1617-1625, Jun. 2012.
[11] J. Zhang, Y. Cheng, C. Zhao, Y. Wu, K. Kang, “Analysis and design of ultra-wideband mm-wave injection-locked frequency dividers using transformer-based high-order resonators,” IEEE J. Solid-State Circuits, vol.53, no.8, pp.2177-2189, Aug. 2018.
[12] L. Wu, H.-C. Luong, “Analysis and design of a 0.6 V 2.2 mW 58.5-to-72.9 GHz divide-by-4 injection-locked frequency divider with harmonic boosting,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 8, pp. 2001-2008, 2013.
[13] C.-C. Chan, H.-N. Yeh, G.-L. Huang, and H.-Y Chang, “A V-band low-phase-noise low-jitter sub-harmonically injection-locked QVCO with high quadrature accuracy in 90-nm CMOS process,” in 2017 IEEE MTT-S Int. Microw. Symp. (IMS), Honololu, HI, 2017, pp. 1359-1362.
[14] S. Kim, D. Yoon, J. Kim, J. Yoo, K. Song, and J.-S Rieh, “ A CMOS 300-GHz injectino-locked frequency tripler with a tri-layer dual coupled line for improved locking range,” IEEE Trans. Circuits Syst. II, vol. 69, no. 2, pp. 309–313, Feb. 2022.
[15] H.-Y. Chang, C.-C. Chan, S.-M. Li, H.-N. Yeh, I. Y.-E. Shen, and G.-L. Huang, “Design and analysis of CMOS low phase noise low quadrature error V-band sub-harmonically injection-locked quadrature FLL,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 06, pp. 2851–2866, June 2018.
[16] J.-W. Li, W.-C. Chen, J. Chou, Y.-C. Liu, and H.-Y. Chang, “A 30-36.6 GHz low jitter degradation SILQVCO with frequency-tracking loop in 65 nm CMOS for 5G frontend applications,” in 2020 15th Eur. Microw. Integr. Circuit Conf., Utrecht, 2021, pp. 241-244.
[17] J.-H. Cheng, J.-H. Tsai, and T.-W. Huang, “Design of a 90.9% locking range injection-locked frequency divider with device ratio optimization in 90-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol.65, no.1, Jan. 2017.
[18] A. Li, S. Zheng, J. Yin, X. Luo, and H. C. Luong, “A 21–48 GHz subharmonic injection-locked fractional-N frequency synthesizer for multiband point-to-point backhaul communications,” IEEE J. Solid-State Circuits, vol. 49, no. 8, pp. 1785-1799, Aug. 2014.
[19] W. Deng, T. Siriburanon, A. Musa, K. Okada, and A. Matsuzawa, “A sub-harmonic injection-locked quadrature frequency synthesizer with frequency calibration scheme for millimeter-wave TDD transceivers, “ IEEE J. Solid-State Circuits, vol. 48, no. 7, pp. 1710-1720, July 2013.
[20] L. Ye, Y. Wang, C. Shi, H. Liao, and R. Huang, “A W-band divider-less cascading frequency synthesizer with push-push ×4 frequency multiplier and sampling PLL in 65nm CMOS,” in 2012 IEEE MTT-S Int. Microw. Symp. Dig., pp.1-3, Jun. 2012.
[21] D. Turker, A. Bekele, P. Upadhyaya, B. Verbruggen, Y. Cao, S. Ma, C. Erdmann, B. Farley, Y. Frans, K. Chang, “A 7.4-to-14GHz PLL with 54fsrms jitter in 16 nm FinFET for integrated RF-data-converter SoCs,” in 2018 IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2018, pp. 11-15.
[22] X. Gao, E. A. M. Klumperink, M. Bohsali and B. Nauta, “A low noise sub-sampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by N2 ,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3253-3263, Dec. 2009.
[23] A. Elkholy, M. Talegaonkar, T. Anand and P. Kumar Hanumolu, "Design and analysis of low-power high-frequency robust sub-harmonic injection-locked clock multipliers,” IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 3160-3174, Dec. 2015.
[24] Y. Hu, X. Chen, T. Siriburanon, J. Du, Z. Gao, V. Govindaraj, A. Zhu, R. B. Staszewski, “A 21.7-to-26.5GHz charge-sharing locking quadrature PLL with implicit digital frequency-tracking loop achieving 75fs jitter and −250dB FoM,” in 2020 IEEE Int. Solid-State Circuits Conf, San Francisco, CA, USA, 2020, pp. 276-278.
[25] Z. Zhang, G. Zhu and C. Patrick Yue, “A 0.65-V 12–16-GHz sub-sampling PLL with 56.4-fsrms integrated jitter and −256.4-dB FoM,” IEEE J. Solid-State Circuits, vol. 55, no. 6, pp. 1665-1683, June 2020.
[26] J. Lee and H. Wang, “Study of subharmonically injection-locked PLLs,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009.
[27] 高曜煌,射頻鎖相迴路 IC 設計,第二章,滄海書局,民國 94 年。
[28] 劉深淵、楊清淵,鎖相迴路,滄海書局,民國 100 年。
[29] H.-T. Bui, and Y. Savaria, “Design of a high-speed differential frequency tovoltage converter and its application in a 5 GHz frequency locked loop,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no.4, pp. 766-774, Apr. 2008.
[30] D. Shin, S. Park, S. Raman and K. J. Koh, “A subharmonically injection-locked PLL with 130 fs RMS jitter at 24 GHz using synchronous reference pulse injection from nonlinear VCO envelope feedback,” in 2017 IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Honolulu, HI, 2017, pp. 100-103.
[31] Z. Zong, M. Babaie, and R. B. Staszewski, “A 60 GHz frequency generator based on a 20 GHz oscillator and an implicit multiplier,” IEEE J. Solid-State Circuits, vol. 51, no. 5, pp. 1261–1273, May 2016.
[32] Q. Zou, K. Ma, and K. S. Yeo, “A low phase noise and wide tuning range millimeter-wave VCO using switchable coupled VCO-cores,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 2, pp. 554–563, Feb. 2015.
[33] V. Szortyka, Q. Shi, K. Raczkowski, B. Parvais, M. Kuijk, P. Wambacq, “A 42 mW 200 fs-Jitter 60 GHz sub-sampling PLL in 40 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 9, pp. 2025-2036, June 2015.
[34] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, Sep. 2004.
[35] K. Kamogawa, T. Tokumitsu, and I. Toyoda, “A 20-GHz-band subharmonically injection-locked oscillator MMIC with wide locking range,” IEEE Microw. Guided Wave Lett., vol. 7, no. 8, pp. 233–235, Aug. 1997.
[36] F.-H. Huang, C.-K. Lin, and Y.-J. Chan, “V-band GaAs pHEMT cross-coupled sub-harmonic oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 473–475, Aug. 2006.
[37] S. Kishimoto, K. Maruhashi, M. Ito, T. Morimoto, Y. Hamada, and K. Ohata, “A 60-GHz-band subharmonically injection locked VCO MMIC operating over wide temperature range,” in 2005 IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2005, pp. 1689–1692.
[38] K. Kamogawa, T. Tokumitsu, and M. Aikawa, “Injection-locked oscillator chain: a possible solution to millimeter-wave MMIC synthesizers,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 9, pp. 1578–1584, Sept. 1997.
[39] W. K. Chan and J. R. Long, “A 56–65 GHz injection-locked frequency tripler with quadrature outputs in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2739–2746, Dec. 2008.
[40] S.-W. Tam, E. Socher, A. Wong, Y. Wang, L. D. Vu, and M.-C. F. Chang, “Simultaneous sub-harmonic injection-locked mm-wave frequency generators for multi-band communications in CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2008, pp. 131–134.
[41] M.-C. Chen and C.-Y. Wu, “Design and analysis of CMOS subharmonic injection-locked frequency triplers,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 8, pp. 1869–1878, Aug. 2008.
[42] Y.-L. Yeh, C.-S. Huang, and H.-Y. Chang, “A 20.7% locking range W-band fully integrated injection-locked oscillator using 90 nm CMOS technology,” in 2012 IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012.
[43] C.-C. Wang, Z. Chen, and P. Heydari, “W-band silicon-based frequency synthesizers using injection-locked and harmonic triplers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 5, pp. 1307–1320, May 2012.
[44] Z. Chen and P. Heydari, “An 85–95.2 GHz transformer-based injection-locked frequency tripler in 65-nm CMOS,” in 2010 IEEE MTT-S Int. Microw. Symp. (IMS), May 2010, pp. 776–779.
[45] W.-C. Chen,H.-N. Yeh, and H.-Y. Chang, “An 100-to-110 GHz low-dc-power sub-harmonically injection-locked quadrature oscillator using stacked boosting technique in 90-nm CMOS Process,” in 2019 IEEE MTT-S Int. Microw. Symp. (IMS), Boston, MA, USA, 2019, pp. 381-384.
[46] Z. Wang, P.-Y. Chiang, P. Nazari, C.-C Wang, Z. Chen, P. Heydari, “A 210 GHz fully integrated differential transceiver with fundamental- frequency VCO in 32 nm SOI CMOS,” in 2013 IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, USA, 2013, pp. 17–21.
[47] C.-Y. Wu and C.-Y. Yu, “Design and analysis of a millimeter-wave direct injection-locked frequency divider with large frequency locking range,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1649–1658, Aug. 2007.
[48] 葉彥良,應用於微波及毫米波鎖相迴路之金氧半場效電晶體注入鎖定振盪器研究,國立中央大學電機工程研究所博士論文,民國102年。
[49] 詹駿清,毫米波注入鎖定振盪器及鎖頻迴路之研究,國立中央大學電機工程研究所碩士論文,民國104年。
[50] 李昇洺,V 及 D 頻段高除頻數注入鎖定除頻器與四相位鎖頻迴路之研製,國立中央 大學電機工程研究所碩士論文,民國 106 年。
[51] D. Shin, S. Raman and K. J. Koh, “A mixed-mode injection frequency-locked loop for self-calibration of injection locking range and phase noise in 0.13μm CMOS,” in 2016 IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2016, pp. 50-51.
[52] S. Yoo, S. Choi, J. Kim, H. Yoon, Y. Lee and J. Choi, “A PVT-robust −39dBc 1kHz-to-100MHz integrated-phase-noise 29GHz injection-locked frequency multiplier with a 600µW frequency-tracking loop using the averages of phase deviations for mm-band 5G transceivers,” in 2017 IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2017, pp. 324-325.
[53] D. Shin, S. Park, S. Raman and K. J. Koh, “A subharmonically injection-locked PLL with 130 fs RMS jitter at 24 GHz using synchronous reference pulse injection from nonlinear VCO envelope feedback, ” in 2017 IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Honolulu, HI, 2017, pp. 100-103.
[54] 沈毅恩,K頻段互補式金氧半場效電晶體低功耗低相位雜訊四相位時脈產生器之研製,國立中央大學電機工程研究所碩士論文,民國106年。
[55] J. Zhang, Y. Peng, H. Liu, Yunqiu, C. Zhao and K. Kang “A 21.7-to-41.7-GHz injection-locked LO generation with a narrowband low-frequency input for multiband 5G communications,” IEEE Trans. Microw. Theory Techn., Early Access Article, 2019.
[56] S. Yoo, S. Choi, J. Kim, H. Yoon, Y. Lee, and J. Choi, “A low-integrated-phase-noise 27–30-GHz injection-locked frequency multiplier with an ultra-low-power frequency-tracking loop for mm-wave-band 5G transceivers,” IEEE J. Solid-State Circuits, vol. 53, no. 2, pp. 375–388, Feb. 2018.
[57] X. Lu, V. Petrov, D. Moltchanov, S. Andreev, T. Mahmoodi, and M. Dohler, “5G-U: conceptualizing integrated utilization of licensed and unlicensed spectrum for future IoT,” IEEE Commun. Magazine, vol. 57, no. 7, pp. 92-98, July, 2019.
[58] Y. Wang, R. Wu, J. Pang, D. You, A. A. Fadila, R. Saengchan, X. Fu, D. Matsumoto, T. Nakamura,R. Kubozoe, M. Kawabuchi, B. Liu, H. Zhang, J. Qiu,H. Liu, N. Oshima, K. Motoi, S. Hori, K. Kunihiro, T. Kaneko, A. Shirane, and K. Okada, “A 39-GHz 64-element phased-array transceiver with built-in phase and amplitude calibrations for large-array 5G NR in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 55, no. 5, pp. 1249–1268, May 2020.
[59] C.-S. Lin, H.-Y. Chang, P.-S. Wu, K.-Y. Lin, and H. Wang, “A 35-50 GHz IQ-demodulator in 0.13-μm CMOS technology,” in 2007 IEEE MTT-S Int. Microw. Symp. (IMS), Honolulu, Hawaii, June 2007, pp. 1397-1400.
[60] P.-H. Tsai, C.-C. Kuo, J.-L. Kuo, S. Aloui, and H. Wang, “A 30–65 GHz reduced-size modulator with low LO power using sub- harmonic pumping in 90-nm CMOS technology,” in 2012 IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Jun. 2012, pp. 491–494.
[61] W.-H. Lin, H.-Y. Yang, J.-H. Tsai, T.-W. Huang, and H. Wang, “1024- QAM high image rejection E-band sub-harmonic IQ modulator and transmitter in 65-nm CMOS process,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 11, pp. 3974–3985, Nov. 2013.
[62] C. Chen, J. Lin and H. Wang, “A 38-GHz high-speed I/Q modulator using weak-inversion biasing modified gilbert-cell mixer,“ IEEE Microw. Wireless Compon. Lett., vol. 28, no. 9, pp. 822- 824, Sept. 2018.
[63] T. Tang, C. Chen, H. Lin, J. Lin and H. Wang” A 38-GHz sub-harmonic I/Q modulator using LO frequency quadrupler in 65-nm CMOS,” in 2019 IEEE Asia-Pacific Microw. Conf., pp. 723- 725, Dec. 2019.
[64] H.-Y. Chang, and H.-C. Hu, “A 38–40 GHz high-speed 2ⁿ-QAM modulator using sub-harmonically injection-locked quadrature FLL,” IEEE Microw. Wireless Compon. Lett., vol. 31no. 7 pp. 897-900, July 2021.
[65] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, and John G. J. Chern, “Design and analysis of CMOS broadband compact high-linearity modulators for gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp. 20–30, Jan. 2006.
[66] H.-Y. Chang, T.-W. Huang, H. Wang, Y.-C. Wang, P.-C. Chao, and C.-H. Chen, “Broad-band HBT BPSK and IQ modulator MMICs and millimeter-wave vector signal characterization,” IEEE Trans. Microw. Theory Techn., vol. 52, pp.908-919, Mar. 2004.
[67] J.-H. Tsai and C.-C. Wang, “A 25–55 GHz CMOS sub-harmonic direct-conversion mixer for BPSK demodulator,” in 2008 IEEE Asia–Pacific Microw. Conf., Dec. 2008, pp. 1–4.
[68] H.-Y. Chang, S.-H. Weng, and C.-C. Chiong, “A 30–50 GHz wide modulation bandwidth bidirectional BPSK demodulator/modulator with low LO power,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 332–334, May 2009.
[69] H.-Y. Chang, C.-K. Lin, and Y.-C.Wang, “A 30–130 GHz ultra broadband direct-conversion BPSK modulator using a 0.5-m E/D-phemt process,” in IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 805–807, Nov. 2007.
[70] H. Takahashi, T. Kosugi, A. Hirata, K. Murata, and N. Kukutsu, “10-Gbit/s BPSK modulator and demodulator for a 120-GHz-band wireless link,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 5, pp. 1361–1368, May 2011.
[71] X. Lin, H.-E. Liu, H.-Y. Chang, and Y.-C. Wang, “A 25-65 GHz broadband low-LO-driving wide-modulation-bandwidth monolithic BPSK modulator in GaAs PIN diode MMIC process,” in 2017 IEEE Asia–Pacific Microw. Conf., Nov 2017, pp. 910-913.
[72] Y. Hamada, K. Maruhashi, M. Ito, S. Kishimoto, T. Morimoto and K. Ohata, “A 60-GHz-band compact IQ modulator MMIC for ultra-high-speed wireless communication,” in 2006 IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, 2006, pp. 1701-1704.
[73] H.-Y. Chang, “Design of broadband highly linear IQ modulator using a 0.5-μm E/D-PHEMT process for Millimeter-Wave applications,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 491-493, July 2008.
[74] Y.-H. Lin, J.-L. Kuo and H. Wang, “A 60-GHz sub-harmonic IQ modulator and demodulator using drain-body feedback technique,” in 2012 7th Eur. Microw. Integr. Circuit Conf., Amsterdam, 2012, pp. 365-368.
[75] W.-H. Lin, H.-Y. Yang, J.-H. Tsai, T.-W. Huang and H. Wang, “1024-QAM high image rejection E-band sub-harmonic IQ modulator and transmitter in 65-nm CMOS process,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 11, pp. 3974-3985, Nov. 2013.
[76] C. Loyez, A. Siligaris, P. Vincent, A. Cathelin and N. Rolland, “A direct conversion IQ modulator in CMOS 65nm SOI for multi-gigabit 60GHz systems,” in 2012 7th Eur. Microw. Integr. Circuit Conf., Amsterdam, 2012, pp. 5-7.
[77] D. Parveg, M. Varonen, M. Kantanen, and J. Pusa, “ A full Ka-band highly linear efficient GaN-on-Si resistive mixer,” in 2021 IEEE MTT-S Int. Microw. Symp. (IMS), Atlanta, GA, USA, 2021, pp. 645-648.
[78] Z.-H. Wang, C.-N. Chen, T.-W. Huang, and H. Wang, “ A 28-GHz high linearity up-conversion mixer using second-harmonic injection technique in 28-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 31 no. 3 pp. 276-279, March 2021.
[79] M. Gavell, H. Zirath, M. Ferndahl and S. E. Gunnarsson, “A linear 70-95 GHz differential IQ modulator for E-band wireless communication,” in 2010 IEEE MTT-S Int. Microw. Symp., Anaheim, CA, 2010, pp. 788-791.
[80] 林祥,微波多相位時脈產生器與 PIN 二極體應用 於毫米波切換器及調變器,國立中央大學電機工程研究所碩士論文,民國 106 年。
[81] Y.-C. Tsai, J.-L. Kuo, J.-H. Tsai, K.-Y. Lin, H. Wang, “A 50–70 GHz I/Q modulator with improved sideband suppression using HPF/LPF based quadrature power splitter,” in 2011 IEEE MTT-S Int. Microw. Symp., Baltimore, MD, 2011, pp. 1–4.
[82] J.-H. Tsai, “Design of 1.2-V broadband high data-rate MMW CMOS I/Q modulator and demodulator using modified gilbert-cell mixer,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 5, pp. 1350–1360, May 2011.
[83] Z.-M. Tsai, H.-C. Liao, Y.-H. Hsiao and H. Wang, “V-band high data-rate I/Q modulator and demodulator with a power-locked loop LO source in 0.15-m GaAs pHEMT technology,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2670–2684, July 2013.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2022-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明