博碩士論文 109521083 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:3.15.0.88
姓名 張育銘(Yu-Ming Zhang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 結合最佳化演算法與OPAL-RT硬體迴圈實現微電網之經濟調度
(Combining Optimization Algorithms and OPAL-RT Hardware in the Loop to Realize Economic Dispatch of Microgrid)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 由於傳統化石燃料能源造成嚴重的環境問題,可整合分散式再生能源的微電網變得越來越重要,本論文研究微電網的能源管理最佳化,在微電網中具有可再生能源和電池儲能等系統,並考慮可再生能源的電力潮流限制和不確定性,此外維持微電網營運商利潤的重要性及對主電網提供額外電力的需求正在提高。本研究提出了基於拉格朗日乘數之方法,把上述問題化為限制式,且可同時處理等式限制和不等式限制,並直接求解獲得最佳經濟調度的結果。為了驗證結果是否符合等式與不等式限制的條件,並探討基於拉格朗日乘數法的性能,採用位於台灣澎湖群島的七美島微電網模型進行研究;將所提出的方法與經驗式判斷法和牛頓結合粒子群體法進行比較,評估三種方法獲得的結果;最後,還考慮了向主電網出售電力和需量反應的情況,透過OPAL-RT即時模擬器內建的硬體迴圈機制與浮點數位訊號處理器,充分驗證和展現所提出方法的有效性。
摘要(英) Microgrid incorporating distributed renewable energy resources (RERs) has been increasingly important due to the serious environmental problems caused by conventional fossil fuel energy. This study deals with the optimal energy management of microgrid comprising RERs and battery energy storage system (BESS). In addition to considering power flow constraints and uncertainties of RERs, the importance of retaining profits of microgrid operators and the needs for providing extra supports to the main grid are rising. To meet all the requirements, the Lagrange multipliers-based method is proposed to deal with equality and inequality constraints at the same time to directly obtain the optimal economic dispatch solution analytically. Moreover, to examine the compliance with the requirements of equality and inequality constraints and investigate the performance of the Lagrange multipliers-based method, the microgrid built in Cimei Island in Penghu Archipelago, Taiwan, is investigated. Furthermore, the comparison of the proposed method with experience-based energy management system (EMS) and Newton-particle swarm optimization (Newton-PSO) is provided to evaluate the obtained solutions. In addition, the conditions of selling power to the main grid and demand response are considered. Through the hardware in the loop (HIL) mechanism, which is built using OPAL-RT real-time simulator with floating-point digital signal processor (DSP), the effectiveness of proposed Lagrange multipliers-based method can be verified and demonstrated.
關鍵字(中) ★ 經濟調度
★ 拉格朗日乘數
★ 牛頓粒子群優化
★ 微電網
★ 能源管理系統
關鍵字(英) ★ Economic dispatch
★ Lagrange multipliers
★ Newton-particle swarm optimization
★ microgrid
★ energy management system
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 本文貢獻 5
1.4 論文大綱 6
第二章 微電網架構與分散式電源控制 7
2.1 微電網控制策略 7
2.1.1 微電網簡介 7
2.1.2 七美島微電網系統架構 7
2.2 微電網規範 11
2.2.1 IEEE 1547-2003規範 11
2.3 微電網控制策略 12
2.3.1 定功率控制 12
2.3.2 分級控制 12
2.4 三相座標軸轉換 14
2.4.1 靜止座標軸 16
2.4.2 同步旋轉座標軸 17
2.5 變流器之實虛功控制與電流控制 18
2.6 分散式電源及控制介紹 20
2.6.1 風力發電機 20
2.6.2 柴油發電機及燃氣發電機 21
2.6.3 太陽能電池 24
2.6.4 儲能系統 27
第三章 公共電業與輔助服務 31
3.1 前言 31
3.2 時間電價 31
3.3 售購電運作方式 33
3.4 輔助服務介紹[64] 35
3.4.1 調頻備轉輔助服務[64] 36
3.4.2 調頻備轉容量 (sReg) 37
3.4.3 即時備轉[64] 38
3.4.4 補充備轉[64] 39
第四章 經濟調度模型及演算法 40
4.1 問題描述 40
4.2 演算法介紹 45
4.2.1 經驗式判斷法 45
4.2.2 牛頓結合粒子群體法 46
4.2.3 拉格朗日乘數法 48
4.2.3.1 目標函數 49
4.2.3.2 限制條件 49
4.2.4 基於拉格朗日乘數法 50
第五章 模擬結果 52
5.1 情境一之模擬結果 52
5.2 情境二之模擬結果 58
5.3 情境三之模擬結果 63
第六章 硬體迴圈規劃與實驗器材 68
6.1 簡介 68
6.2 硬體實作架構 68
6.2.1 Ethernet通訊方式 70
6.2.2 CANbus通訊方式 71
6.3 即時模擬系統 72
6.3.1 即時模擬介紹 72
6.3.2 OP4510硬體 75
6.3.3 模型分割與命名 77
6.3.4 RT-LAB軟體 78
6.3.4.1 OpComm 80
6.3.4.2 Artemis Stubline 80
6.3.4.3 OpAsyncIPCtrl [72] 81
6.3.4.4 OpAsyncRecv [72] 82
6.3.4.5 OpAsyncSend [72] 82
6.3.5 電路硬體處理器 83
6.4 Ethernet程式 84
6.5 CANbus 85
6.5.1 CANalyst 86
6.5.2 CANbus通訊界面 87
6.6 數位訊號處理器 87
6.6.1 CAN通信模塊 90
第七章 實驗結果 91
7.1 情境一之實驗結果 91
7.2 情境二之實驗結果 96
7.3 情境三之實驗結果 100
第八章 結論與未來展望 104
8.1 結論 104
8.2 未來展望 104
參考文獻 105
作者簡歷 115
參考文獻 [1] 談光雄,「微電網之運轉與智慧型控制」,國防大學理工學院國防科學研究所,博士論文,民國102年。
[2] D. J. Cox and T. Davis, “Distributed generation and sensing for intelligent distributed microgrids,” in Proc. IEEE/SMC International Conf. System of Systems Engineering, Los Angeles, CA, pp. 5, 2006.
[3] X. Kong, X. Liu, L. Ma and K. Y. Lee, "Hierarchical Distributed Model Predictive Control of Standalone Wind/Solar/Battery Power System," IEEE Trans. Syst., Man, Cybern. Syst., vol. 49, no. 8, pp. 1570-1581, Aug. 2019.
[4] 洪穎怡,「微電網簡介」,台灣電力企業聯合會電子報第十二期,2019年8月。
[5] F. J. Lin, K. H. Tan, C. -F. Chang, M. Y. Li and T. Y. Tseng, "Development of Intelligent Controlled Microgrid for Power Sharing and Load Shedding," IEEE Trans. Power Electron., vol. 37, no. 7, pp. 7928-7940, July 2022.
[6] L. N. Liu and G. H. Yang, "Distributed Optimal Economic Environmental Dispatch for Microgrids Over Time-Varying Directed Communication Graph," IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 1913-1924, 1 April-June 2021.
[7] Q. Lü, X. Liao, H. Li and T. Huang, "Achieving Acceleration for Distributed Economic Dispatch in Smart Grids Over Directed Networks," IEEE Trans. Netw. Sci. Eng., vol. 7, no. 3, pp. 1988-1999, 1 July-Sept. 2020.
[8] L. Bai, M. Ye, C. Sun and G. Hu, "Distributed Economic Dispatch Control via Saddle Point Dynamics and Consensus Algorithms," IEEE Trans. Control Syst. Technol., vol. 27, no. 2, pp. 898-905, March 2019.
[9] C. A. Caldeira, A. D. D. de Almeida, H. R. Schlickmann, C. S. Gehrke, and F. Salvadori, “Impact analysis of the BESS insertion in electric grid using real-time simulation,” in Proc. IEEE PES Innovative Smart Grid Technologies Conf. - Latin America (ISGT Latin America), Gramado, Brazil, pp. 1-6, 2019.
[10] C. Dufour and J. Bélanger, “On the Use of Real-Time Simulation Technology in Smart Grid Research and Development,” IEEE Trans. Ind. Electron., vol. 50, no. 6, pp. 3963-3970, Nov./Dec. 2019.
[11] K. S. Amitkumar, P. Pillay, and J. Bélanger, “An Investigation of Power-Hardware-in-the-Loop-Based Electric Machine Emulation for Driving Inverter Open-Circuit Faults,” IEEE Trans. Transport. Electrific., vol. 7, no. 1, pp. 170-182, Mar. 2021.
[12] M. Faisal, M. A. Hannan, P. J. Ker, A. Hussain, M. B. Mansor and F. Blaabjerg, "Review of Energy Storage System Technologies in Microgrid Applications: Issues and Challenges," IEEE Access, vol. 6, pp. 35143–35164, 2018.
[13] N. Nasser and M. Fazeli, “Buffered-Microgrid Structure for Future Power Networks; a Seamless Microgrid Control,” IEEE Trans. Smart Grid, vol. 12, no. 1, pp. 131–140, Jan. 2021.
[14] C. Huang, D. Yue, J. Xie, Y. Li and K. Wang, "Economic dispatch of power systems with virtual power plant based interval optimization method," CSEE J. Power Energy Syst., vol. 2, no. 1, pp. 74–80, Mar. 2016.
[15] R. K. Sharma, S. Mudaliyar and S. Mishra, "A DC Droop-Based Optimal Dispatch Control and Power Management of Hybrid Photovoltaic-Battery and Diesel Generator Standalone AC/DC System," IEEE Syst. J., vol. 15, no. 2, pp. 3012–3023, Jun. 2021.
[16] S. Reddy K, L. K. Panwar, B. K. Panigrahi and R. Kumar, "Modeling of Carbon Capture Technology Attributes for Unit Commitment in Emission-Constrained Environment," IEEE Trans. Power Syst., vol. 32, no. 1, pp. 662–671, Jan. 2017.
[17] T. G. Hlalele, R. M. Naidoo, J. Zhang and R. C. Bansal, "Dynamic Economic Dispatch With Maximal Renewable Penetration Under Renewable Obligation," IEEE Access, vol. 8, pp. 38794–38808, 2020.
[18] P. Zeng, H. Li, H. He and S. Li, "Dynamic Energy Management of a Microgrid Using Approximate Dynamic Programming and Deep Recurrent Neural Network Learning," IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 4435–4445, July 2019.
[19] Y. Ji, J. Wang, J. Xu, X. Fang, and H. Zhang, “Real-Time Energy Management of a Microgrid Using Deep Reinforcement Learning,” Energies, vol. 12, no. 12, p. 2291–2311, Jun. 2019.
[20] Z. Wang, J. Wang and M. La Scala, "A Novel Distributed-Decentralized Fixed-Time Optimal Frequency and Excitation Control Framework in a Nonlinear Network-Preserving Power System," IEEE Trans. Power Syst., vol. 36, no. 2, pp. 1285–1297, Mar. 2021.
[21] J.A.d. Costa, D.A. Castelo Branco, M.C. Pimentel Filho, M.F.d. Medeiros Júnior and N.F.d. Silva, "Optimal Sizing of Photovoltaic Generation in Radial Distribution Systems Using Lagrange Multipliers," Energies, vol. 12, no. 9, pp. 1728–1746, May 2019.
[22] J. O. Lee, Y. S. Kim and S. I. Moon, "Current Injection Power Flow Analysis and Optimal Generation Dispatch for Bipolar DC Microgrids," IEEE Trans. Smart Grid, vol. 12, no. 3, pp. 1918–1928, May 2021.
[23] J. Qin, Y. Wan, X. Yu and Y. Kang, "A Newton Method-Based Distributed Algorithm for Multi-Area Economic Dispatch," IEEE Trans. Power Syst., vol. 35, no. 2, pp. 986–996, Mar. 2020.
[24] W. Lu, M. Liu, S. Lin and L. Li, "Fully Decentralized Optimal Power Flow of Multi-Area Interconnected Power Systems Based on Distributed Interior Point Method," IEEE Trans. Power Syst., vol. 33, no. 1, pp. 901–910, Jan. 2018.
[25] M. Yousif, Q. Ai, Y. Gao, W. A. Wattoo, Z. Jiang and R. Hao, "An optimal dispatch strategy for distributed microgrids using PSO," CSEE J. Power Energy Syst., vol. 6, no. 3, pp. 724–734, Sep. 2020.
[26] M. A. Ilyas, G. Abbas, T. Alquthami, M. Awais and M. B. Rasheed, "Multi-Objective Optimal Power Flow With Integration of Renewable Energy Sources Using Fuzzy Membership Function," IEEE Access, vol. 8, pp. 143185–143200, 2020.
[27] C. Yoon, Y. Park, M. K. Sim and Y. I. Lee, "A Quadratic Programming-Based Power Dispatch Method for a DC-Microgrid," IEEE Access, vol. 8, pp. 211924–211936, 2020.
[28] R. Ponciroli, N. E. Stauff, J. Ramsey, F. Ganda and R. B. Vilim, "An Improved Genetic Algorithm Approach to the Unit Commitment/Economic Dispatch Problem," IEEE Trans. Power Syst., vol. 35, no. 5, pp. 4005–4013, Sep. 2020.
[29] L. Chen, Z. Deng and X. Xu, "Two-Stage Dynamic Reactive Power Dispatch Strategy in Distribution Network Considering the Reactive Power Regulation of Distributed Generations," IEEE Trans. Power Syst., vol. 34, no. 2, pp. 1021–1032, March 2019.
[30] W. Dong, Q. Yang, W. Li and A. Y. Zomaya, "Machine-Learning-Based Real-Time Economic Dispatch in Islanding Microgrids in a Cloud-Edge Computing Environment," IEEE Internet Things J., vol. 8, no. 17, pp. 13703–13711, 1 Sep.1, 2021.
[31] A. Kalakova, H. S. V. S. K. Nunna, P. K. Jamwal and S. Doolla, "A Novel Genetic Algorithm Based Dynamic Economic Dispatch With Short-Term Load Forecasting," IEEE Trans. Ind Appl., vol. 57, no. 3, pp. 2972–2982, May-June 2021.
[32] M. Li, W. Wei, Y. Chen, M. -F. Ge and J. P. S. Catalão, "Learning the Optimal Strategy of Power System Operation With Varying Renewable Generations," IEEE Trans. Sustain. Energy, vol. 12, no. 4, pp. 2293–2305, Oct. 2021.
[33] F. Safdarian, A. Kargarian and F. Hasan, "Multiclass Learning-Aided Temporal Decomposition and Distributed Optimization for Power Systems," IEEE Trans. Power Syst., vol. 36, no. 6, pp. 4941–4952, Nov. 2021.
[34] Y. Chen, S. M. Mazhari, C. Y. Chung and S. O. Faried, "A Preventive Dispatching Method for High Wind Power-Integrated Electrical Systems Considering Probabilistic Transient Stability Constraints," IEEE Open Access J. Power Energy, vol. 8, pp. 472–483, 2021.
[35] J. Wang, X. He, J. Huang and G. Chen, "Recurrent Neural Network for Nonconvex Economic Emission Dispatch," J. Mod. Power Syst. Clean Energy, vol. 9, no. 1, pp. 46–55, January 2021.
[36] Z. Liu et al., "A Lagrange Multiplier Based State Enumeration Reliability Assessment for Power Systems With Multiple Types of Loads and Renewable Generations," IEEE Trans. Power Syst., vol. 36, no. 4, pp. 3260–3270, July 2021.
[37] B. S. Millar and D. Jiang, "Asynchronous consensus for optimal power flow control in smart grid with zero power mismatch," J. Mod. Power Syst. Clean Energy, vol. 6, no. 3, pp. 412–422, May 2018.
[38] X. He, Y. Zhao and T. Huang, "Optimizing the Dynamic Economic Dispatch Problem by the Distributed Consensus-Based ADMM Approach," IEEE Trans. Ind. Informat., vol. 16, no. 5, pp. 3210–3221, May 2020.
[39] Z. Xiaohui, G. Wenbo and Z. Jiaqing, "Decentralized Economic Dispatching of Multi-Micro Grid Considering Wind Power and Photovoltaic Output Uncertainty," IEEE Access, vol. 9, pp. 104093–104103, 2021.
[40] Q. Yang, G. Chen and T. Wang, "ADMM-based distributed algorithm for economic dispatch in power systems with both packet drops and communication delays," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 842–852, May 2020.
[41] X. Hou, K. Sun, N. Zhang, F. Teng, X. Zhang and T. C. Green, "Priority-Driven Self-Optimizing Power Control Scheme for Interlinking Converters of Hybrid AC/DC Microgrid Clusters in Decentralized Manner," IEEE Trans. Power Electron., vol. 37, no. 5, pp. 5970-5983, May 2022.
[42] 澎湖縣政府澎湖縣七美鄉公所,七美島地理位置。
[43] 林法正,陳彥豪,盧思穎,陳毓文,「澎湖群島智慧電網示範介紹」,國土及公共治理季刊第五卷第二期,2017年7月。
[44] NEP-Ⅱ第二期能源國家型科技計畫,智慧電網主軸中心107年度期末審查報告。
[45] 蕭果登,「以OPAL-RT硬體迴圈實現微電網之智慧型控制」,國立中央大學,碩士論文,2020年6月。
[46] 陳品蓉,「以OPAL-RT硬體迴圈實現微電網之電壓回復控制」,國立中央大學,碩士論文,2021年6月。
[47] IEEE Standard 1547-2003, “IEEE Standard for interconnecting distributed resources with electric power systems,” IEEE Standard, New York, USA, pp. 1-16, 2003
[48] L. Meng, Q. Shafiee, G. F. Trecate, H. Karimi, D. Fulwani, X. Lu, and J. M. Guerrero, “Review on control of DC microgrids and multiple microgrid clusters,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 3, pp. 928–948, Sep. 2017.
[49] D. E. Olivares, A. M. Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. G. Bellmunt, M. Saeedifard, R. P. Behnke, G. A. J. Estévez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905-1919, Jul. 2014.
[50] K. Yu, Q. Ai, S. Wang, J. Ni, and T. Lv, “Analysis and optimization of droop controller for microgrid system based on small-signal dynamic model,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 695-705, Mar. 2016.
[51] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, Jan. 2011.
[52] R. A. Badwawi, W. R. Issa, T. K. Mallick, and M. Abusara, “Supervisory control for power management of an islanded AC microgrid using a frequency signalling-based fuzzy logic controller,” IEEE Trans. Sustainable Energy, vol. 10, no. 1, pp. 94-104, Jan. 2019.
[53] Y. Han, K. Zhang, H. Li, E. A. A. Coelho and J. M. Guerrero, “MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: a comprehensive overview,” IEEE Trans. Power Electronics, vol. 33, no. 8, pp. 6488-6508, Aug. 2018.
[54] 黃仲欽,「交流電動機控制」,交流電動機課程講義,民國97年。
[55] J. Vergauwe, A. Martinez, A. Ribas, “Optimization of a wind turbine using permanent magnet synchronous generator (PMSG)” Renewable Energy & Power Quality Journal, Vol. 1, No.4, Apr. 2006.
[56] MATLAB/Simulink wind turbine.
[57] K. Tan, F. Lin, C. Shih and C. Kuo, "Intelligent Control of Microgrid With Virtual Inertia Using Recurrent Probabilistic Wavelet Fuzzy Neural Network," IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7451-7464, July 2020.
[58] J. Fang, H. Li, Y. Tang and F. Blaabjerg, "Distributed Power System Virtual Inertia Implemented by Grid-Connected Power Converters," IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8488-8499, Oct. 2018.
[59] Chapter 3 The Behaviour of Solar Cells.
[60] S. Nema, R. Nema and G. Agnihotri, “Matlab/simulink based study of photovoltaic cells/modules/array and their experimental verification,” International Journal of Energy and Environment (IJEE), vol. 1, no. 3, pp. 487-500, Jan. 2010.
[61] M. T. Lawder, B. Suthar, P. W. C. Northrop, S. De, C. M. Hoff, O. Leitermann, M. L. Crow, S. Santhanagopalan, and V. R. Subramanian, “Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications,” Proc. IEEE, vol. 102, no. 6, pp. 1014-1030, Jun. 2014.
[62] 陳彥豪、黃詩文、盧思穎,「儲能市場機會與台灣應用利基」,行政院原子能委員會核能研究所研究計畫,2015年9月。
[63] 謝錦隆,薛康琳,鍾岳霖,戴志揚,「臺灣風力發電與液流電池系統儲電情境模擬」,臺灣能源期刊第三卷第一期第55-78頁,2016年3月。
[64] 台灣電力公司網站。檢自:
https://www.taipower.com.tw/tc/index.aspx
[65] F. J. Lin, J. C. Liao, C. I. Chen, P. R. Chen and Y. M. Zhang, "Voltage Restoration Control for Microgrid With Recurrent Wavelet Petri Fuzzy Neural Network," IEEE Access, vol. 10, pp. 12510-12529, 2022.
[66] 蘇俊連,「離島再生能源併網之電池儲能系統規劃與經濟調度」,國立高海洋大學,碩士論文,2013年7月。
[67] W. T. Huang, K. C. Yao, and C. C. Wu, “Using the Direct Search Method for Optimal Dispatch of Distributed Generation in a Medium-Voltage Microgrid,” Energies, vol. 7, no. 12, pp. 8355–8373, Dec. 2014.
[68] N. A. Khan, G. A. S. Sidhu and F. Gao, "Optimizing Combined Emission Economic Dispatch for Solar Integrated Power Systems," IEEE Access, vol. 4, pp. 3340-3348, 2016.
[69] A. S. Loyarte, L. A. Clementi and J. R. Vega, "A Hybrid Methodology for a Contingency Constrained Economic Dispatch under High Variability in the Renewable Generation," IEEE Lat. Am. Trans., vol. 17, no. 10, pp. 1715-1723, October 2019.
[70] L. Ibarra, A. Rosales, P. Ponce, A. Molina, and R. Ayyanar, “Overview of Real-Time Simulation as a Supporting Effort to Smart-Grid Attainment,” Energies, vol. 10, no. 817, Jun. 2017.
[71] 劉邦威,「應用即時模擬技術於交流微電網之建模與模擬」,國立中正大學,碩士論文,2012年7月。
[72] Opal-RT Technologies Inc., RT LAB Version 11.3, User’s Guide.
[73] OP4510使用教學,思渤科技,2019。
[74] L. Y. Lu, J. H. Liu, and C. C. Chu, “Distributed real-time simulation modeling and analysis of a micro-grid with renewable energy sources,” IEEE PES Innovative Smart Grid Technologies, Tianjin, pp. 1-6, 2012.
[75] C. Dufour, S. Cense, T. Ould-Bachir, L. Grégoire, and J. Bélanger, “General-purpose reconfigurable low-latency electric circuit and motor drive solver on FPGA,” in Proc. IECON 2012 - 38th Annual Conf. IEEE Industrial Electronics Society, Montreal, QC, pp. 3073-3081, 2012.
[76] Documentation, MathWorks.
[77] 成大資工Wiki,CAN。檢自:
http://wiki.csie.ncku.edu.tw/embedded/CAN
[78] USB-CAN (CANalyst- II分析儀)產品說明書V2.03,珠海創芯科技有限公司,2017。
[79] TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235,
TMS320F28234, TMS320F28232 Digital Signal Controllers (DSCs) Data Manual, Texas Instruments, Jun. 2007.
[80] SN65HVD23x 3.3-V CAN Bus Transceivers datasheet, Texas Instruments, Apr. 2018.
[81] T. T. Ku and C. S. Li, "Implementation of Battery Energy Storage System for an Island Microgrid With High PV Penetration," IEEE Trans. Ind Appl., vol. 57, no. 4, pp. 3416-3424, July-Aug. 2021.
[82] 新盛安動力科技,2018年8月13日,柴油發電機工作原理 柴油發電機操作規程。檢自:
https://kknews.cc/news/blmmoq9.html
[83] Hadi Saadat, Power system Analysis, PSA, 2010.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2022-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明