博碩士論文 109521103 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.144.25.195
姓名 黃璿峻(Shiuan-Jiun Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 B類連續模式n79頻段氮化鎵功率放大器與J類連續模式n77頻段氮化鎵功率放大器暨X頻段 20瓦氮化鎵功率放大器之研製
(Implementations on Class-B Continuous Mode n79-band GaN Power Amplifier, Class-J Continuous Mode n77-band GaN Power Amplifier, and X-band 20 W GaN Power Amplifier)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文利用穩懋半導體WINTM 0.25 μm GaN-on-SiC HEMT與WINTM 0.15 μm GaN-on-SiC HEMT製程設計三顆功率放大器。電路設計上選擇操作於C頻段與X頻段,首先模擬不同製程之電晶體特性,選擇最佳之電晶體尺寸與操作電流密度,結合B/J類連續模式諧波網路形成寬頻且高效率匹,最後量測電路特性以驗證電路設計結果。
第一顆使用WINTM 0.25 μm GaN-on-SiC HEMT製程設計於n79頻段B類連續模式功率放大器,電路設計採全積體化之兩級共源極電路架構,透過挑選偏壓,改善線性度,輸出匹配電路利用 B 類連續模式技術,完成基頻與二倍頻的匹配,來達到寬頻且高效率的功率放大器。量測結果顯示最佳功率增益為 18.3 dB,3-dB 頻寬為 4.15 - 5.5 GHz,飽和輸出功率為 38.1 dBm,功率附加效率最高可達 35.1 %,1-dB 增益壓縮點輸出功率為35 dBm,晶片面積為 4.57 (2.69 × 1.70) mm2。
第二顆WINTM 0.25 μm GaN-on-SiC HEMT製程設計於n77頻段J類連續模式功率放大器,電路設計採全積體化之兩級共源極電路架構,輸出端利用緊湊的基頻、二倍頻匹配網路達到高效率的J類連續模式設計,量測結果為3-dB頻寬為3.6 - 5.05 GHz,最大功率增益為18.5 dB,飽和輸出功率為38.8 dBm,功率附加效率最高可達 31.3 %,1-dB 增益壓縮點輸出功率為33.6 dBm,晶片面積為4.74 (2.74 × 1.73) mm2。
第三顆使用WINTM 0.15 μm GaN-on-SiC HEMT製程於X頻段 20瓦功率放大器,電路設計採全積體化之兩級共源極電路架構,輸出匹配利用功率組合架構與B類連續模式輸出網路組成,以達到高輸出功率,其3-dB操作頻寬為9.2-11 GHz,最大功率增益為23.8 dB,飽和輸出功率為43.0 dBm,功率附加效率最高可達 32.7 %,晶片面積為14.88 (3.1 × 4.8) mm2。
摘要(英) The thesis developed three power amplifiers that were designed in WINTM 0.25-µm GaN, and 0.15-µm GaN for both C-band and X-band operations. Firstly, the transistor characteristics of different processes were simulated to choose the best transistor size and current density. Continuous class-B/J mode technique with harmonic tuning network was adapted for high efficiency and broadband matching performance. Finally, these proof-of-concepts were verified by measuring various circuit performances.
The first chip presents a class-B continuous mode n79-band power amplifier in WINTM 0.25-µm GaN technology. According to the analysis of the appropriate bias voltage is selected to improve the linearity. The output matching network of this wideband and high efficiency power amplifier is designed to match the fundamental and second harmonic frequencies which comply with the continuous class-B mode operations. The designed power amplifier achieves a 3-dB bandwidth from 4.15 to 5.5 GHz with small signal gain of 18.3 dB. CW measurements demonstrate a maximum saturated output power of 38.1 dBm, a power added efficiency up to 35.1 %, and an OP1dB of 35 dBm, respectively. The chip size is 4.57 (2.69 × 1.7) mm2.
The second chip presents a class-J continuous mode n77-band power amplifier in WINTM 0.25-µm GaN technology. The circuit design adopts a fully integrated two-stage common source topology. A compact output matching network which deals with fundamental and second harmonic frequencies is used to comply with continuous class-J mode operation. The designed power amplifier achieves a 3-dB bandwidth from 3.6 to 5.05 GHz with small signal gain of 18.5 dB. CW measurements demonstrate a maximum saturated output power of 38.8 dBm, a power added efficiency up to 31.3 %, and an OP1dB of 33.6 dBm, respectively. The chip size is 4.74 (2.74 × 1.73) mm2.
The third chip presents an X-band 20 W power amplifier in WINTM 0.15-µm GaN technology. The circuit design adopts a fully integrated two-stage common source topology. The power combining output matching network is designed to comply with continuous class-B mode operation. The circuit simulation shows a 3-dB operating bandwidth of 9.2-11 GHz, a maximum transmission gain of 23.8 dB, a saturated output power of 43.0 dBm, and a power-added efficiency of up to 32.7%. the chip area is 14.88 (3.1 × 4.8) mm2.
關鍵字(中) ★ 氮化鎵
★ 寬頻
★ 功率放大器
★ B/J類連續模式
關鍵字(英) ★ GaN
★ Broadband
★ power amplifier
★ Class-B/J continuous mode
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡介 2
第二章 B類連續模式n79頻段氮化鎵功率放大器 3
2-1 功率放大器研究現況 3
2-2 連續模式技術介紹 4
2-3 B類連續模式n79頻段氮化鎵功率放大器設計 7
2-3-1 電路架構 7
2-3-2 電晶體選擇 8
2-3-3 RC穩定電路 10
2-3-4 輸出匹配設計 12
2-3-5 電路模擬與量測結果 15
2-3-6 結果比較與討論 25
第三章 J類連續模式n77頻段氮化鎵功率放大器 28
3-1 前言 28
3-2 J類連續模式n77頻段氮化鎵功率放大器設計 29
3-2-1 電路架構 29
3-2-2 J類連續模式輸出匹配設計 32
3-2-3 電路模擬與量測結果 35
3-2-4 結果比較與討論 45
第四章 X頻段 20瓦氮化鎵功率放大器 47
4-1 前言 47
4-2 X頻段 20瓦氮化鎵功率放大器之研究 48
4-2-1 電路架構 48
4-2-2 輸出匹配設計 51
4-2-3 電路模擬結果 52
4-2-4 結果比較與討論 56
第五章 結論 58
5-1 結論 58
5-2 未來方向 59
參考文獻 60
參考文獻 [1] L. Nguyen, A. N. K. Pham, S. Lee, and C. Huynh, "A broadband, high even-order suppression distributed power amplifier for sub-6 GHz communication system," in International Symposium on Electrical and Electronics Engineering (ISEE), May 2021.
[2] G. Nikandish, R. B. Staszewski, and A. Zhu, "Bandwidth enhancement of GaN MMIC Doherty power amplifiers using broadband transformer-based load modulation network," in IEEE Access, vol. 7, 2019, pp. 119844-119855.
[3] Y. Xu et al., "A Scalable Large-Signal Multiharmonic Model of AlGaN/GaN HEMTs and Its Application in C-Band High Power Amplifier MMIC," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 8, pp. 2836-2846, Aug. 2017.
[4] J. Pang, C. Chu, J. Wu, Z. Dai, M. Li, S. He, and A. Zhu, "Broadband GaN MMIC Doherty Power Amplifier Using Continuous-Mode Combining for 5G Sub-6 GHz Applications," in IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2022, pp. 2143-2154.
[5] L. Chen, H. Liu, J. Hora, J. A. Zhang, K. S. Yeo, and X. Zhu, "A Monolithically Integrated Single-Input Load Modulated Balanced Amplifier with Enhanced Efficiency at Power Back-Off, " in IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 56, 2021, pp. 1553 – 1564.
[6] G. Nikandish, R. B. Staszewski and A. Zhu, "Design of Highly Linear Broadband Continuous Mode GaN MMIC Power Amplifiers for 5G," in IEEE Access, vol. 7, 2019, pp. 57138-57150.
[7] T. Canning, P. J. Tasker, and S. C. Cripps, "Continuous Mode Power Amplifier Design Using Harmonic Clipping Contours: Theory and Practice, " in IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 62, NO. 1, JANUARY 2014, pp. 100-110.
[8] Y. M. A. Latha, K. Rawat, "Design of Ultra-Wideband Power Amplifier Based on Extended Resistive Continuous Class B/J Mode, " in IEEE Transactions on Circuits and Systems II: Express Briefs, July 2021, pp.419-423.
[9] W. H. Doherty, "A new high efficiency power amplifier for modulated waves," in Proceedings of the Institute of Radio Engineers, vol. 24, no. 9, pp. 1163-1182, 1936.
[10] P. J. Tasker, V. Carrubba, P. Wright, J. Lees, J. Benedikt and S. Cripps, "Wideband PA Design: The "Continuous" Mode of Operation," in IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2012, pp. 1-4.
[11] M. Sajedin, I. Elfergani, J. Rodriguez, and M. Violas, "Energy Efficient and Wideband Class-J Doherty Power Amplifier," 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), July 2020, pp. 1-6.
[12] G. Lv, W. Chen, L. Chen, and Z. Feng, "A fully integrated C-band GaN MMIC doherty power amplifier with high gain and high efficiency for 5G application," in IEEE MTT-S International Microwave Symposium (IMS), 2019, pp. 560-563.
[13] B. Liu, M. Mao, C. C. Boon, P. Choi, D. Khanna and E. A. Fitzgerald, "A Fully Integrated Class-J GaN MMIC Power Amplifier for 5-GHz WLAN 802.11ax Application," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 5, May 2018, pp. 98 434-436.
[14] G. R. Nikandish, A. Nasri, A. Yousef, A. Zhu, and R. B. Staszewski, "A Broadband Fully Integrated Power Amplifier Using Waveform Shaping Multi-Resonance Harmonic Matching Network," in IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, vol. 69, Jan. 2022, pp. 1-14.
[15] K. Kim and C. Nguyen, "A V-Band Power Amplifier With Integrated Wilkinson Power Dividers-Combiners and Transformers in 0.18-μm SiGe BiCMOS," in IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 66, NO. 3, MARCH 2019, pp.337-341.
[16] J. Kim, Y. Yoon, H. Kim, K. H. An, W. Kim, H. W. Kim, C. H. Lee, and K. T. Kornegay, "A Linear Multi-Mode CMOS Power Amplifier With Discrete Resizing and Concurrent Power Combining Structure," in IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 46, NO. 5, MAY 2011, pp. 1034-1048.
[17] H. F. Wu, Q. F. Cheng, X. G. Li, and H. P. Fu, "Analysis and Design of an Ultra-broadband Stacked Power Amplifier in CMOS Technology," in IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 63, NO. 1, JANUARY 2016, pp. 49-53.
[18] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi, and P. M. Asbeck, "A Watt-Level Stacked-FET Linear Power Amplifier in Silicon-on-Insulator CMOS," in IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 58, NO. 1, JANUARY 2010, pp. 57-64.
[19] G. Lv, W. Chen, X. Chen, S. Wan, F. M. Ghannouchi, and Z. Feng, "A Fully Integrated 3.5-/4.9-GHz Dual-Band GaN MMIC Doherty Power Amplifier Based on Multi-Resonant Circuits," in IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 70, NO. 1, JANUARY 2022, pp. 416-431.
[20] K. Chen and D. Peroulis, "Design of Broadband Highly Efficient Harmonic-Tuned Power Amplifier Using In-Band Continuous Class-F F Mode Transferring," in IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 60, NO. 12, DECEMBER 2012, pp. 4107-4116.
[21] P. Wright, J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A Methodology for Realizing High Efficiency Class-J in a Linear and Broadband PA," in IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 57, NO. 12, DECEMBER 2009, pp. 3196-3204.
[22] S. Rezaei, L. Belostotski, F. M. Ghannouchi, and P. Aflaki, "Integrated Design of a Class-J Power Amplifier," in IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 61, NO. 4, APRIL 2013, pp. 1639-1648.
[23] J. Moon, J. Kim, and B. Kim, "Investigation of a Class-J Power Amplifier With a Nonlinear," in IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 58, NO. 11, NOVEMBER 2010, pp. 2800-2811.
[24] T. Yao et al. "Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio," in IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[25] H. Wu, C. Wang, Q. Lin, Y. Chen, L. Hu, and W. Tong, "A High-efficiency 15-Watt GaN HEMT X-band MMIC Power Amplifier," in International Conference on Microwave and Millimeter Wave Technology (ICMMT), May 2018.
[26] Y. Hua, H. Wu, X. Liao, C. Liao, L. Hu, and J. Lv, "A High-efficiency 3-Watt GaAs pHEMT X-band MMIC Power Amplifier," in International Conference on Microwave and Millimeter Wave Technology (ICMMT), December 2018,
[27] N. Gholamreza and A. Medi, "A design procedure for high-efficiency and compact-size 5-10-W MMIC power amplifiers in GaAs pHEMT technology", in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 8, Oct. 2013, pp. 2922-2933.
[28] G. Yu, L. Gong, J. Zhang, Y. Wu, X. Xie, Y. Zhang, and Y. Xu, "A X-band 20W Power Amplifier MMIC with 50% Bandwidth Using 6-inch GaN Technology," in IEEE Asia-Pacific Microwave Conference (APMC), 19 March 2020, pp. 408-410.
[29] D. Sardin, T. Reveyrand, and Z. Popovi’c, "X-band 10W MMIC highgain power amplifier with up to 60% PAE," in Proc. 9th Eur. Microw. Integr. Circuits Conf, Dec. 2014, pp. 393-396.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2022-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明